Energy theorems for magnetoelastic waves in a perfectly conducting medium

Author:
George Dassios

Journal:
Quart. Appl. Math. **39** (1982), 479-490

MSC:
Primary 73R05; Secondary 73D35

DOI:
https://doi.org/10.1090/qam/644102

MathSciNet review:
644102

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**D. G. Costa,*On partition of energy for uniformly propagative systems*, J.M.A.A.**58**, 56-62 (1977) MR**0470505****[2]**G. Dassios,*Equipartition of energy for Maxwell's equations*, Quart. Appl. Math. (to appear)**[3]**G. Dassios,*Equipartition of energy in elastic wave propagation*, Mechanics Research Communications**6**, 45-50 (1979) MR**524233****[4]**G. Dassios and E. Galanis,*Asymptotic equipartition of kinetic and strain energy for elastic waves in anisotropic media*, Quart. Appl. Math.**38**, 121-128 (1980) MR**575835****[5]**R. S. Duffin,*Equipartition of energy in wave motion*, J.M.A.A.**32**, 386-391 (1970) MR**0269190****[6]**J. A. Goldstein,*An asymptotic property of solutions of wave equations*, Proc. A.M.S.**23**, 359-363 (1969) MR**0250125****[7]**J. A. Goldstein,*An asymptotic property of solutions of wave equations II*, J.M.A.A.**32**, 392-399 (1970) MR**0267281****[8]**P. D. Lax and R. S. Phillips,*Scattering theory*, Academic Press, New York (1967) MR**0217440****[9]**H. A. Levine,*An equipartition of energy theorem for weak solutions of evolutionary equations in Hilbert space: the Lagrange identity method*, J. Diff. Eqs.**24**, 197-210 (1977) MR**0437874****[10]**W. Nowacki,*Dynamic problems of thermoelasticity*, Noordhoff, Netherlands (1975)**[11]**W. A. Strauss,*Some energy components tend to zero globally*. Notices A.M.S.**26**, 79T-B118, p. A-431 (1979)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73R05,
73D35

Retrieve articles in all journals with MSC: 73R05, 73D35

Additional Information

DOI:
https://doi.org/10.1090/qam/644102

Article copyright:
© Copyright 1982
American Mathematical Society