Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



An inequality for the coefficient $ \sigma $ of the free boundary $ s(t)=2\sigma \sqrt {t}$ of the Neumann solution for the two-phase Stefan problem

Author: Domingo Alberto Tarzia
Journal: Quart. Appl. Math. 39 (1982), 491-497
MSC: Primary 80A20; Secondary 35K20
DOI: https://doi.org/10.1090/qam/644103
MathSciNet review: 644103
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a semi-infinite body (e.g. ice), represented by $ \left( {0, + \infty } \right)$, with an initial temperature $ - c < 0$ having a heat flux $ h\left( t \right) = - {h_0}/\sqrt t \left( {{h_0} > 0} \right)$ in the fixed face $ x = 0$. If $ {h_0} > c{k_1}/\sqrt {\pi {a_1}} $ there exists a solution, of Neumann type, for the resulting two-phase Stefan problem. If we connect it with the Neumann problem (on $ x = 0$ the body has a temperature $ b > 0$ we obtain the inequality erf $ \left( {\sigma /{a_2}} \right) < \left( {{k_2}b{a_1}/{k_1}c{a_2}} \right)$ for the coefficient $ \sigma $ of the free boundary $ s\left( t \right) = 2\sigma \sqrt t $, where $ {k_i}$, and $ a_i^2$ are respectively the thermal conductivity and thermal diffusivity coefficients of the corresponding $ i$ phase $ i = 1:$ solid phase, $ i = 2:$ liquid phase). If $ {h_0} < c{k_1}/\sqrt {\pi {a_1}} $ there is no solution of the initial problem and if $ {h_0} = c{k_1}/\sqrt {\pi {a_1}} $ the problem has no physical meaning and corresponds to the case where the latent heat of fusion $ L$ tends to infinity.

References [Enhancements On Off] (What's this?)

  • [1] M. Brillouin, Sur quelques problèmes non résolus de physique mathématique classique : propagation de la fusion, Annales de l'lnst. H. Poincaré, 1, 285-308 (1930/31)
  • [2] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd ed., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1988. MR 959730
  • [3] J. Crank, The mathematics of diffusion, Oxford, at the Clarendon Press, 1956. MR 0082827
  • [4] L. I. Rubenšteĭn, The Stefan problem, American Mathematical Society, Providence, R.I., 1971. Translated from the Russian by A. D. Solomon; Translations of Mathematical Monographs, Vol. 27. MR 0351348
  • [5] D. A. Tarzia, Sobre el caso estacionario del problema de Stefan a dos fases. Mathematicae Notae, Año 28, 73-89 (1980/81)
  • [6] D. A. Tarzia, La chaleur latente de fusion tend vers l'infini n'a pas de sense physique pour le problème de Stefan, submitted to Int. J. Heat Mass Transfer
  • [7] H. Weber, Die partiellen Differential-gleinchungen der mathematischen Physik, nach Riemanns Vorlesungen, t. II, Braunwschweig(1901), 118-122

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 80A20, 35K20

Retrieve articles in all journals with MSC: 80A20, 35K20

Additional Information

DOI: https://doi.org/10.1090/qam/644103
Article copyright: © Copyright 1982 American Mathematical Society

Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website