Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Strain measures and compatibility equations in the linear high-order shell theories

Authors: M. Brull and L. Librescu
Journal: Quart. Appl. Math. 40 (1982), 15-25
MSC: Primary 73L99
DOI: https://doi.org/10.1090/qam/652046
MathSciNet review: 652046
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] F. B. Hildebrand, E. Reissner, and G. B. Thomas, Notes on the foundations of the theory of small displacements of orthotropic shells, Tech. Notes Nat. Adv. Comm. Aeronaut., 1949 (1949), no. 1833, 59. MR 0030886
  • [2] P. M. Naghdi, On the theory of thin elastic shells, Quart. Appl. Math. 14 (1957), 369–380. MR 0084284, https://doi.org/10.1090/S0033-569X-1957-84284-7
  • [3] J. E. Stoneking and A. P. Boresi, A theory for free vibration of orthotropic shells of revolution, Nucl. Eng. and Des. 17, 271-285 (1970)
  • [4] J. M. Whitney, and C. T. Sun, A refined theory for laminated anisotropic cylindrical shells, J. Appl. Mechan. 41, 471-476 (1974)
  • [5] Eric Reissner, Stress strain relations in the theory of thin elastic shells, J. Math. Physics 31 (1952), 109–119. MR 0048283
  • [6] C. T. Sun and J. M. Whitney, Axisymmetric vibrations of laminated composite cylindrical shells, J. Acoust. Soc. Am. 55, 1238-1246 (1974)
  • [7] J. A. Zukas, Effects of transverse normal and shear strains in orthotropic shells, AIAAJ. 12, 1753-1755 (1974)
  • [8] W. H. Drysdale and A. R. Zak, Structural problems in thick shells, in Thin-shell structures: theory, experiment, design, pp. 453-463, Eds. Y. C. Fung and E. E. Sechler, Prentice-Hall Inc., Englewood Cliffs, 1974
  • [9] V. Manea, Some problems of the theory of elastic flat plates (in Roumanian), Edit. Acad. Rep. Soc. Roum., pp. 193-221 (1966)
  • [10] R. B. Nelson and D. R. Lorch, A refined theory for laminated orthotropic plates, J. Applied Mechanics 41, 177-183.(1974)
  • [11] K. H. Lo, R. M. Christensen, and E. M. Wu, A high-order theory of plate deformation: Part 1: Homogeneous plates, J. Appl. Mech. 44, 4, 663-668 (1977)
  • [12] K. H. Lo, R. M. Christensen, and E. M. Wu, Stress solution determination for high order plate theory, Int. J. Solid Structures 14, 655-662 (1978)
  • [13] L. Ia. Ainola, Non-linear theory of Timoshenko type in elastic shells (in Russian), Izv. A. N. Est. SSR., Ser. Fiz.-Matem. i. Techn. 14, 337-344 (1965)
  • [14] L. M. Habip and I. K. Ebicoglu, On the equations of motion of shells in the reference state, Ingenieur Archiv. 34, (1965)
  • [15] A. W. Leissa, Vibrations of shells, NASA SP-288, 1973
  • [15'] J. R. Vinson and T. W. Chou, Composite materials and their use in strucutres, Chapter 7, John Wiley & Sons, New York, Toronto, 1974
  • [16] L. Librescu, Improved linear theory of elastic anistropic multilayered shells (in Russian), Mekhanika Polimerov, Part I, No. 6, 1038-1050, Nov. - Dec. 1975 and Part II, No. 1, 100-109, Jan. - Feb. 1976 (English Translat. by Plenum Publ. Corp.)
  • [17] L. Librescu, Non-linear theory of elastic anisotropic, multilayered shells (in Russian), in Selected topics in applied mechanics, ed. L. I. Sedov. pp. 453-466, Nauka, Moskow, 1974
  • [18] K. Z. Galimov, The theory of shells with transverse shear deformation effect (in Russian), Kazanskogo Universiteta, 1977
  • [19] P. M. Nagdhi, The theory of shells and plates, in Handbuch der Physik VI a/1 (ed. S.Flügge), Springer, Berlin, Heidelberg, New York, pp. 425-640 (1972)
  • [20] L. Librescu, Elastostatics and kinetics of anisotropic and heterogeneous shell-type structures, Noordhoff, Leyden, 1975
  • [21] P. M. Naghdi, Foundations of elastic shell theory, Progress in Solid Mechanics, Vol. IV, North-Holland, Amsterdam, 1963, pp. 1–90. MR 0163488
  • [22] L. Librescu, A physically nonlinear theory of elastic shells and plates, the Love-Kirchoff hypothesis being eliminated, Rev. Roum. Sci. Tech. - Mec. Appl., 15, 1263-1284 (1970)
  • [23] P. M. Naghdi, A new derivation of the general equations of elastic shells, Internat. J. Engrg. Sci. 1 (1963), 509–522 (English, with French, German, Italian, and Russian summaries). MR 0162420, https://doi.org/10.1016/0020-7225(63)90006-5
  • [24] P. M. Naghdi, Further results in the derivation of the general equations of elastic shells, Internat. J. Engrg. Sci. 2 (1964), 269–273 (English, with French, German, Italian, and Russian summaries). MR 0167022, https://doi.org/10.1016/0020-7225(64)90024-2
  • [25] H. Leipholz, Theory of elasticity, Noordhoff International Publishing, Leyden, 1974. Mechanics of Elastic Stability, No. 1; Monographs and Textbooks on Mechanics of Solids and Fluids. MR 0413649
  • [26] A. L. Gol'denveizer, Qualitative investigation of the stress state in thin elastic shells (in Russian), Prikl. Matem. i. Mechan. IX, 463-478 (1945)
  • [27] Eric Reissner, A note on stress functions and compatibility equations in shell theory, Topics in Applied Mechanics, Elsevier, Amsterdam, 1965, pp. 23–32. MR 0191178
  • [28] R. B. Rikards and G. A. Teters, Stability of shells from composite materials (in Russian), Publ. House, Zinatne-Riga, 1974, pp. 82-87.
  • [29] W. T. Koiter, A consistent first approximation in the general theory of thin elastic shells, Proc. Sympos. Thin Elastic Shells (Delft, 1959) North-Holland, Amsterdam, 1960, pp. 12–33. MR 0142241
  • [30] W. T. Koiter, A consistent first approximation in the general theory of thin elastic shells, Proc. Sympos. Thin Elastic Shells (Delft, 1959) North-Holland, Amsterdam, 1960, pp. 12–33. MR 0142241
  • [31] B. Budiansky and J. L. Sanders Jr., On the “best” first-order linear shell theory, Progress in Applied Mechanics, Macmillan, New York, 1963, pp. 129–140. MR 0158595
  • [32] P. M. Naghdi, On a variational theorem in elasticity and its application to shell theory, Trans. ASME Ser. E. J. Appl. Mech. 31 (1964), 647–653. MR 0173390
  • [33] I. N. Vekua, Theory of thin shallow shells of variable thickness, Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 30 (1965), 3–103 (Russian, with Georgian summary). MR 0197007
  • [34] N. K. Galimov, On the applicability of Legendre polynomials in the substantiation of the theory of sandwich plates and shells (in Russian) in Issledovania po teorii plastin i obolocek (ed. by K. Z. Galimov), X, 371-385, Univ. of Kazan, Kazan, 1973
  • [35] G. Sansome, Orthogonal functions, Interscience, New York, 1959

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73L99

Retrieve articles in all journals with MSC: 73L99

Additional Information

DOI: https://doi.org/10.1090/qam/652046
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society