THE STEFAN PROBLEM WITH A CONVECTIVE BOUNDARY CONDITION*

By

A. D. SOLOMON (Union Carbide Corporation, Oak Ridge)
V. ALEXIADES (The University of Tennessee, Knoxville)
D. G. WILSON (Union Carbide Corporation, Oak Ridge)

Abstract. We study the one-phase Stefan problem on a semi-infinite strip \(x \geq 0 \), with the convective boundary condition \(-K T_x(0, t) = h[T_L - T(0, t)]\). Points of interest include: a) behavior of the surface temperature \(T(0, t) \); b) asymptotic behavior as \(h \to \infty \); c) uniqueness, and d) bounds on the phase change front and total system energy.

Introduction. In this paper we study the following problem:

Problem I. Find \(X(t) \) and \(T(x, t) \) such that

\[
\begin{align*}
X(t) & \text{ is Lipschitz-continuous for } t \geq 0; \quad (1.1) \\
X'(t) & \text{ is continuous for } t > 0; \quad (1.2) \\
T(x, t) & \text{ is continuous for } t > 0 \text{ and } 0 < x < X(t); \quad (1.3) \\
T_t(x, t), T_{xx}(x, t) & \text{ are continuous for } t > 0 \text{ and } 0 < x < X(t); \quad (1.4) \\
-\infty < \lim \inf_{x, t \to 0} T(x, t), \lim \sup_{x, t \to 0} T(x, t) & < \infty; \quad (1.5) \\
T_s(x, t) & \text{ is continuous for } t > 0, 0 \leq x \leq X(t); \quad (1.6) \\
X(t) \text{ and } T(x, t) & \text{ obey the conditions} \\
T_s(x, t) & = \alpha T_{xx}(x, t), t > 0, 0 < x < X(t), \quad (1.7) \\
T(x, t) & \equiv T_{cr}, t > 0, x \geq X(t), \quad (1.8) \\
X(0) & = 0, \quad (1.9) \\
\rho H X'(t) & = -K T_s(X(t), t), \quad (1.10) \\
-\infty < \lim \inf T_s(0, t), \lim \sup T_s(0, t) & < \infty; \quad (1.11) \\
\end{align*}
\]

Here \(\alpha, \rho, H, K, h \) are positive constants, \(T_s \) and \(T_{cr} \) are constants, and \(T_L > T_{cr} \).

Eqs. (1.7-1.11) describe melting of a material due to convective heat transfer from a fluid with ambient temperature \(T_L \) flowing across the face at \(x = 0 \). The parameters are:

\(\alpha = \text{material thermal diffusivity (m}^2\text{/s}) \),
\(K = \text{material thermal conductivity (KJ/m - s - °C}) \),

\[\rho = \text{material density (Kg/m}^3\text{)}, \]
\[H = \text{latent heat of melting (KJ/Kg)}, \]
\[T_{cr} = \text{material melting temperature (°C)}, \]
\[T_f = \text{ambient fluid temperature (°C)}, \]
\[h = \text{fluid to material surface heat transfer coefficient (KJ/m}^2\text{ – s – °C).} \]

We will also use
\[\Delta T = T_f - T_{cr} (°C), \]
and the material specific heat
\[c = \text{specific heat (KJ/Kg – °C)}. \]

Of course \(\alpha = K/c\rho \). The melting front at time \(t \) is at \(x = X(t) \) while \(T(x, t) \) is the temperature at position \(x \) and time \(t \).

It is known \([3]\) that a solution to Problem I exists. While a number of papers in the heat transfer literature are devoted to various approximations pertinent to this problem \([5, 8-10]\), the only studies of the qualitative behavior of its solution concern existence and smoothness \([7, 12]\), in addition to \([3]\). We will study the qualitative behavior of a solution, focusing on questions pertinent to the melting (or solidification) problem from which it arises. These include

1. **Question 1.** How do \(T(x, t), X(t) \) behave at \(t = 0? \)
2. **Question 2.** How does the surface temperature \(T(0, t) \) vary with \(t? \)
3. **Question 3.** What happens as \(h \to \infty? \)

On physical grounds it would be expected that the surface temperature \(T(0, t) \) would tend to \(T_{cr} \) as \(t \to 0^+ \), and to the fluid temperature \(T_f \) as \(t \to \infty \). Similarly, \((1.10)\) and \((1.11)\) would lead us to conjecture that \(X'(0^+) \) exists and is given by
\[X'(0^+) = h(T_f - T_{cr})/\rho H. \]

The situation whereby \(h \to \infty \) could arise from a greater flow rate for the transfer fluid at \(x = 0 \) \([6]\), in which case we would expect that \(T(0, t) \to T_f \); in this case we would also anticipate that the solution to problem I should tend to that of the problem with \((1.11)\) replaced by
\[T(0, t) = T_f, \quad t > 0. \] \quad (1.12)

This latter problem \((1.1)-(1.10), (1.12)\), will be referred to as Problem II, and its exact solution is given by
\[X_x(t) = 2\lambda\sqrt{\alpha t}, \quad t \geq 0, \] \quad (1.13)
\[T_x(x, t) = T_f - \Delta T \operatorname{erf}(x/2\sqrt{\alpha t})/\operatorname{erf} \lambda \] \quad (1.14)

with \(\lambda \) the root of
\[\lambda e^{\lambda^2} \operatorname{erf} \lambda = \text{St}/\sqrt{\pi}. \] \quad (1.15)

Here \(\text{St} \) is the so-called “Stefan number”, indicating the ratio of sensible to latent heat \([11]\), and given by
\[\text{St} = c\Delta T/H. \]
Our aim is to establish these claims. To do this we use a number of moment-type relations as well as the maximum principle. These are discussed in Sec. 2. In Sec. 3 we address questions 1 and 2; what happens as \(h \to \infty \) is examined in Sec. 4. We close in Sec. 5, with upper and lower bounds on the total heat in the material. In the Appendix we prove a form of the maximum principle which we use.

2. Preliminaries. The maximum principle for the heat equation is normally used in two forms [4]. The first asserts that a solution to the heat equation cannot attain its greatest or least value at an interior point \(P_0 \) of a domain unless it equals that value at all points influencing \(P_0 \). The second, due to Friedman, concerns the behavior of a nontangent temperature derivative at a boundary point. As stated in [4] it presents some difficulty due to the assumed “strong-sphere” property of the boundary. For this reason we use the following version of the maximum principle suggested by a result of Vyborny [13].

Theorem 1. Corner Point Maximum Principle. Let \(D \) be a simply connected domain in the \(x, t \) plane and \(P_0 = (x_0, t_0) \) a point of its boundary. Let \(N \) be the disk

\[
N = \{(x, t) \mid (x - x_0)^2 + (t - t_0)^2 < \delta^2\}.
\]

Set

\[
G^0 = D \cap N \cap \{(x, t) \mid t < t_0\}, \quad \bar{G}^0 = \bar{G}^0 - \partial D.
\]

Suppose that \(u \in C(\bar{D}), u_x, u_t, u_{xx} \in C(D) \), and

\[
Lu = u_t - \alpha u_{xx} \leq 0 \tag{2.1}
\]

in \(D \). Furthermore, let

\[
u(P) < u(P_0) \quad \text{for} \quad P \in \bar{G}^0, \tag{2.2}
\]

\[
u(P) \leq u(P_0) \quad \text{for} \quad P \in \partial D \cap N, \tag{2.3}
\]

and suppose that \(\partial D \cap N \) is a \(C^1 \) curve representable as \(x = X(t) \). Then

\[
\lim_{P \to P_0} \frac{u(P) - u(P_0)}{|P - P_0|} < 0
\]

where \(P \) tends to be \(P_0 \) in any nontangential direction.

The proof of this theorem is given in the Appendix.

Corollary 1. If all of the conditions of Theorem 1 hold except for (2.2), (2.3), and if

\[
\lim_{P \to P_0} \frac{(u(P) - u(P_0))}{|P - P_0|} \geq 0,
\]

then either

a) there exist points \(P = (x, t) \) in \(G^0 \) arbitrarily close to \((x_0, t_0) \), with \(t \leq t_0 \), for which \(u(P) \geq u(P_0) \)

or

b) there exist points \(P \) on \(\partial D \cap N \) arbitrarily close to \(P_0 \) for which \(u(P) > u(P_0) \).

Reversing the inequalities in Theorem 1 and Corollary 1 yields the corresponding corner-point minimum principle.
We will use a number of integral relations satisfied by a solution $X(t)$, $T(x,t)$ to Problem I. From the continuity of $T_x(x,t)$ in any region $t \geq \tau > 0$ we find
\begin{align*}
\int_{\tau}^{t} \rho H [X(t) - X(\tau)] d\tau' + \int_{0}^{X(t)} \rho c x [T(x,t) - T_{cr}] dx - \int_{0}^{X(t)} \rho c x [T(x,\tau) - T_{cr}] dx,
\end{align*}
\begin{align*}
\int_{0}^{X(t)} \rho c x [T(x,t) - T_{cr}] dx - \int_{0}^{X(t)} \rho c x [T(x,\tau) - T_{cr}] dx,
\end{align*}
\begin{align*}
+ (\rho H/2) \left[X^2(t) - X^2(\tau) \right] = K \int_{\tau}^{t} \left[T(0, t') - T_{cr} \right] dt',
\end{align*}
\begin{align*}
\int_{0}^{X(t)} \left(\rho c/2 \right) \left[T(x,t) - T_{cr} \right]^2 dx - \int_{0}^{X(t)} \left(\rho c/2 \right) \left[T(x,\tau) - T_{cr} \right]^2 dx,
\end{align*}
\begin{align*}
+ \int_{0}^{t} \int_{0}^{X(t')} K T_x(x,t')^2 dx dt' = \int_{\tau}^{t} h[T(0, t')][T(0, t') - T_{cr}] dt'.
\end{align*}

For example, (2.4) is derived as follows. Let θ be any value between 0 and 1/2. Consider the closed domain
\begin{align*}
D_0 = \{(x',t') | \tau \leq t' \leq t, \theta X(t') \leq x' \leq (1-\theta)X(t') \}
\end{align*}
By the conditions (1.1)–(1.11) we find
\begin{align*}
(d/dt') \int_{(1-\theta)X(t')}^{X(t')} \rho c [T(x', t') - T_{cr}] dx' = \theta X(t') \rho c [T[(1-\theta)X(t'), t'] - T_{cr}]
- \theta X(t') \rho c [T[\theta X(t'), t] - T_{cr}] + K T_x[[(1-\theta)X(t'), t'] - K T_x[\theta X(t'), t']).
\end{align*}
Integrating this equation with respect to t' on $[\tau, t]$ and letting $\theta \to 0$ yields (2.4). Relations (2.5), (2.6) are derived similarly. From the boundedness of $T(x, t')$ and the fact that $X(t) \to 0$ as $t \to 0^+$, we conclude that in (2.4)
\begin{align*}
\int_{0}^{X(t)} \rho c [T(x, \tau) - T_{cr}] dx \to 0
\end{align*}
as $\tau \to 0$, whence
\begin{align*}
\int_{0}^{t} h[T(0, t') dt' = \rho H X(t) + \int_{0}^{X(t)} \rho c [T(x, t) - T_{cr}] dx,
\end{align*}
which is the overall heat balance relation on $[0, t]$. In the same way (2.5) implies
\begin{align*}
\int_{0}^{X(t)} \rho c x [T(x, t) - T_{cr}] dx + (\rho H/2) X(t)^2 = K \int_{0}^{t} [T(0, t') - T_{cr}] dt'.
\end{align*}
Consider (2.6). By elementary calculus
\begin{align*}
[T_L - T(0, t')][T(0, t') - T_{cr}] \leq (1/4) (T_L - T_{cr})^2.
\end{align*}
Hence

\[
\int_0^{X(t)} \frac{(c\rho/2)}{(c\rho/2)} (T(x, t) - T_{cr})^2dx - \int_0^{X(t)} \frac{(c\rho/2)}{(c\rho/2)} (T(x, \tau) - T_{cr})^2dx
\]
\[+ \int_0^t \int_0^{X(t')} K T_x(x, t')^2 dx' dt' \leq \frac{[h(T_L - T_{cr})^2/4]}{t - \tau}. \tag{2.9}
\]

Letting \(\tau \to 0 \) we conclude that

\[
\int_0^{X(t)} \frac{(c\rho/2)}{(c\rho/2)} (T(x, t) - T_{cr})^2dx + \int_0^t \int_0^{X(t')} K T_x(x, t')^2 dx' dt' \leq \frac{[h(T_L - T_{cr})^2/4]}{t}, \tag{2.11}
\]

and, in particular, that

\[
\int_0^t \int_0^{X(t')} K T_x(x, t')^2 dx' dt' \leq t[h(T_L - T_{cr})^2/4].
\]

3. The qualitative behavior of a solution

We now address the qualitative behavior of a solution to Problem I for a fixed \(h > 0 \).

Theorem 2. The phase boundary \(X(t) \) solving Problem I is always positive: \(X(t) > 0 \) for \(t > 0 \).

Proof. Since \(X(t) \geq 0 \) for all \(t \geq 0 \), a point \(t_0 > 0 \) for which \(X(t_0) = 0 \) must be a zero of the (continuous) derivative \(X'(t) \). However, we would then have \(T(0, t_0) = T_{cr} \), whence

\[
0 = \rho H X'(t_0) = -K T_x[X(t_0), t_0] = -K T_x(0, t_0) = h(T_L - T_{cr}) \neq 0
\]

and the theorem is proved.

Theorem 3. \(T_{cr} \leq T(x, t) < T_L \) for \(t > 0 \) and \(0 \leq x \leq X(t) \).

Our proof rests upon the following lemma, which asserts that \(T(x, t) \) cannot be bounded away from \(T_{cr} \) in a neighborhood of the origin.

Lemma 1. Let \(t_0 > 0 \) be given. There is no function \(x = x^*(t) \) satisfying the following conditions on \((0, t_0] \): a) \(0 \leq x^*(t) < X(t) \); b) \(0 < \omega \leq |T[x^*(t), t] - T_{cr}| \) for some \(\omega \).

Proof of Lemma 1. Roughly speaking, we will see that if \(T(x, t) \) is bounded away from \(T_{cr} \), then \(T_x(x, t) \) must grow in a manner inconsistent with the bound (2.11).

For suppose that \(x^*(t) \) satisfies (a) and (b), and let \(t \in (0, t_0] \). Since \(T_x(x, t) \) is continuous on \([0, X(t)]\),

\[
|T_{cr} - T[x^*(t), t]| \leq \int_{x^*(t)}^{X(t)} |T_x(x, t)| dx \leq \{X(t) \int_0^{X(t)} T_x(x, t)^2 dx\}^{1/2}
\]

or by (b),

\[
\omega^2 \leq X(t) \int_0^{X(t)} T_x(x, t)^2 dx.
\]

Integration over \([t/2, t]\) for any \(t \leq t_0 \) yields

\[
(\omega^2 t/2) \leq \int_{t/2}^t X(t') \int_0^{X(t')} T_x(x, t')^2 dx' dt'.
\]
By the generalized mean value theorem,
\[(\omega^2 t/2) \leq X(t^*) \int_{t/2}^{t} \int_{0}^{X(t')} T_x(x, t')^2 \, dx \, dt'\]
where \(t^* \in [t/2, t]\). Now by (2.11) we obtain
\[\frac{1}{2} J X(t^*)^{1/2} \leq \int_{t/2}^{t} \int_{0}^{X(t')} T_x(x, t')^2 \, dx \, dt'\]
This contradicts \(X(t^*) \to 0\) as \(t \to 0\) and thus proves the lemma.

Proof of Theorem 3. We begin by showing that \(T(x, t)\) must be less than \(T_L\) for all points \((x, t)\) with \(t > 0, 0 \leq x \leq X(t)\). Suppose that \(T(x_0, t_0) > T_L\) for some \(t_0 > 0\) and \(x_0 \in [0, X(t_0)]\).

Claim: For each \(t_1 \in (0, t_0)\) there is some \(x^* = x^*(t_1) \in [0, X(t)]\) such that \(T(x^*(t_1), t_1) > T(x_0, t_0)\).

Since this directly contradicts Lemma 1 we need only establish this claim. Fix \(t_1 \in (0, t_0)\) and let
\[S = \{t: t \in [t_1, t_0], T(0, t) > T_L\}.\]
If \(x_0 = 0\) then \(t_0 \in S\) and \(S\) is not empty. If \(x_0 > 0\) then, by the strong maximum principle [4] applied to \(D_1 = \{(x, t): 0 < x < X(t), t_1 \leq t \leq t_0\}\), \(T(x, t)\) must exceed \(T(x_0, t_0) > T_L\) somewhere on its parabolic boundary. If this occurs at some point \((x, t_1)\), \(x \in [0, X(t_1)]\) the claim is proved. If it occurs on \(x = 0\), i.e., for some \((0, t^*)\) with \(t^* \in [t_1, t_0]\), then \(t^* \in S\), so again \(S\) is not empty. Let
\[t^{**} = \inf S.\]
Suppose \(t^{**} > t_1\). Then \(T(0, t_1) < T_L\) while \(T(0, t^{**}) = T_L\), whence \(-K T_x(0, t^{**}) = 0\) and by Corollary 1 to the corner point maximum principle either there exist points \((x, t)\) arbitrarily close to \((0, t^{**})\) with \(t \leq t^{**}\) for which \(T(x, t) \geq T_L\), or there exists some \(t < t^{**}\) for which \(T(0, t) > T_L\). Either possibility violates the definition of \(t^{**}\) and thus \(t^{**} = t_1\). Hence \(T(0, t_1) \geq T_L\), and \(x^*(t_1) = 0\). Thus our claim is proved and \(T(x, t) < T_L\). The proof that \(T(x, t) \geq T_{cr}\) is carried out in a similar way, as we see by assuming that
\[T(x_0, t_0) \leq T_{cr} - \omega\]
for \(\omega > 0\) and some point \((x_0, t_0), x_0 \in [0, X(t_0)]\).

By the strong maximum principle we now have:

Corollary 2. \(T(x, t) > T_{cr}\) for \(t > 0, x \in (0, X(t))\).

This result implies that at any point \((X(t), t)\), \(T(x, t)\) assumes a strictly minimum value relative to points to its left. Hence by the corner point minimum principle \(\rho H X'(t) = -K T_x(X(t), t) > 0\) and we have

Corollary 3. \(X'(t) > 0\) for \(t > 0\).

We will now use the moment-type relations of Sec. 2 to derive upper bounds on \(X(t)\).
Theorem 4. For any $t > 0$ the phase boundary of Problem I obeys the conditions:

$$X(t) \leq f_1(t) = h t \Delta T / \rho H,$$

$$X(t) \leq f_2(t) = \{2Kt \Delta T / \rho H\}^{1/2},$$

$$X(t) \leq \begin{cases} f_1(t), & t \leq t^* \\ f_2(t), & t \geq t^* \end{cases}$$

with

$$t^* = 2K \rho H / h^2 \Delta T.$$

Proof: From Theorem 3, $T(x, t) \geq T_{cr}$, whence (2.7) implies (3.1). Similarly $T(0, t) < T_L$ whence from (2.8), $\frac{1}{2} \rho H X(t)^2 \leq K t \Delta T$, or (3.2) is proved.

By a straightforward calculation we see that $f_1(t) \leq f_2(t)$ for $t \leq t^*$, and $f_1(t) \geq f_2(t)$ for $t \geq t^*$, whence (3.3) holds.

Note that the bound (3.3) indicates an initial linear growth in the phase front, followed by growth as $t^{1/2}$.

Theorem 5. $T(x, t)$ is nondecreasing in t; that is, $T(x, t + \Delta t) \geq T(x, t)$ for all $x \in [0, X(t)]$, $\Delta t > 0$.

Proof. The concept of the proof is to show that the first forward difference of $T(x, t)$ in t, namely

$$v(x, t, \Delta t) = T(x, t + \Delta t) - T(x, t)$$

is never negative for any choice of $\Delta t > 0$. To do this we note first that $v(x, t, \Delta t)$ is defined and satisfies the heat equation for $t > 0, x \in [0, X(t)]$. Moreover, by Corollary 2 and 3,

$$v(X(t), t, \Delta t) > 0.$$

At $x = 0$

$$K v_x(0, t, \Delta t) = h v(0, t, \Delta t).$$

Suppose now that $v(x, t, \Delta t)$ is negative at some point (x_0, t_0):

$$v(x_0, t_0, \Delta t) \leq -\omega < 0.$$

By an identical argument to that used in proving Theorem 3 we conclude that for each $0 < t < t_0$ there is a point $x^* = x^*(t)$ for which

$$v(x^*(t), t, \Delta t) \leq -\omega.$$

Hence

$$|v(x^*(t), t, \Delta t) - v(X(t), t, \Delta t)| > \omega$$

for all $t \in (0, t_0)$. However, we may now apply the argument used in proving Lemma 1 to show that this violates (2.11) and the theorem is proved.

Corollary 4. $T(x, t) \rightarrow T_{cr}$ as $x, t \rightarrow 0^+$.

Proof. By the Theorem, $T(x, t)$ is nonincreasing for $t \rightarrow 0^+$. But then by Lemma 1 it cannot be bounded away from T_{cr}, whence it must tend to T_{cr} as $x, t \rightarrow 0^+$. Thus, we can
now extend $T(x, t)$ continuously to $(0, 0^{+})$ and define it for $t \geq 0$, $x \in [0, X(t)]$ as a continuous function.

An immediate implication of Theorem 5 is that for $t > 0$, $x \in (0, X(t))$,

$$
\varepsilon T_{xx}(x, t) = T_{l}(x, t) \geq 0.
$$

(3.5)

This in turn implies the following theorem.

Theorem 6. Let $q(x, t) = -K T_{x}(x, t)$ for $t > 0$, $x \in [0, X(t)]$. Then

$$
\rho H X'(t) \leq q(x, t) \leq h[T_{L} - T(0, t)] \leq h\Delta T.
$$

(3.6)

Proof. For any $\theta \in (0, 1/2)$

$$
T_{x}(x, t) - T_{x}(\theta X(t), t) = \int_{\theta X(t)}^{x} T_{xx}(x', t) \, dx' \geq 0
$$

whence

$$
-K T_{x}(x, t) \leq -K T_{x}(\theta X(t), t);
$$

letting $\theta \to 0$ and using the continuity of $T_{x}(x, t)$ on the closed x-interval, we have

$$
q(x, t) = -K T_{x}(x, t) \leq -K T_{x}(0, t) = h[T_{L} - T(0, t)].
$$

The second inequality of (3.6) is proved in the same manner.

The key difficulty in understanding the convective boundary condition lies in the variability of the surface temperature $T(0, t)$. We will now obtain a bound on it describing its long-term behavior.

Theorem 7. For any $t > 0$, the surface temperature $T(0, t)$ of Problem I obeys

$$
0 < T_{l} - T(0, t) \leq (1 + St)(2K\rho H\Delta T)^{1/2}/ht^{1/2}.
$$

(3.7)

Proof. From the heat balance relation (2.7) and the fact that $T(x, t) \in [T_{r}, T_{l}]$,

$$
\int_{0}^{t} h[T_{L} - T(0, t')]dt' \leq H\rho X(t)[1 + St],
$$

and using the upper bound (3.2)

$$
X(t) \leq \{2Kt\Delta T/\rho H\}^{1/2}
$$

we find

$$
\int_{0}^{t} h[T_{L} - T(0, t')]dt' \leq \{2K\rho Ht\Delta T\}^{1/2}[1 + St].
$$

However, $T(0, t)$ is nondecreasing for increasing t, whence

$$
h(t[T_{L} - T(0, t)]) \leq \int_{0}^{t} h[T_{L} - T(0, t')]dt'
$$

and (3.7) holds true.

Corollary 5. $T(0, t) \to T_{l}$ as $t \to \infty$.

We will now further examine the behavior of $X(t)$, $T(x, t)$ at the origin.
Theorem 8. \(X(t) \) has a right-hand derivative at \(t = 0 \), given by

\[
X'(0^+) = \frac{h \Delta T}{\rho H}.
\] (3.8)

Proof: From (2.7)

\[
\frac{X(t)}{t} = \frac{h}{\rho H} \left(T_L - T(0, t') \right) dt' - \frac{c}{tH} \int_0^{x(t)} (T(x, t) - T_{cr}) dx.
\]

Since \(T(0, t) \) is continuous for \(t \geq 0 \),

\[
\frac{1}{t} \int_0^t (T_L - T(0, t')) dt' = T_L - T(0, \theta t), \quad \theta \in [0, 1].
\]

Moreover,

\[
\frac{c}{tH} \int_0^{x(t)} (T(x, t) - T_{cr}) dx = \frac{cX(t)}{Ht} \int_0^{x(t)} (1/X(t)) \left(\frac{1}{t} \int_0^{x(t)} (T(x, t) - T_{cr}) dx \right)
\]

\[
= \left(\frac{c}{H} \right) \frac{X(t)}{t} \left(T(x^*(t), t) - T_{cr} \right)
\]

for \(x^*(t) \in [0, X(t)] \). Hence

\[
\frac{X(t)}{t} \left(1 + \frac{c}{H} [T(x^*(t), t) - T_{cr}] \right) = \left(\frac{h}{\rho H} \right) \left(T_L - T(0, \theta t) \right).
\]

Letting \(t \to 0 \) yields the asserted result.

Corollary 6. \(T_l(0, 0^+) \) exists and equals \((h \Delta T)^2 / \rho H K \).

Proof: For any \(t > 0 \),

\[
(T(0, t) - T_{cr}/t) = (T(0, t) - T(X(t), t)/t
\]

\[
= -(X(t)/t) T_x(x^*(t), t), \quad 0 \leq x^*(t) \leq X(t).
\]

Moreover, from (3.6)

\[
(\rho H X'(t)/K) \leq - T_x(x^*(t), t) \leq (h/K) (T_L - T(0, t)),
\]

and as \(t \to 0 \) this implies

\[
-T_x(0^+, 0^+) = (h \Delta T / K),
\]

whence

\[
T_l(0, 0^+) = ((h \Delta T)^2 / \rho H K).
\]

The bound (3.6) on \(|T_x| \) is the principal tool needed for proving uniqueness of the solution, using the approach of Douglas [2]. Because of the direct nature of the proof we will merely state

Theorem 9. The solution to problem I is unique.

4. Dependence on the heat transfer coefficient. We now address the question of how the solution to Problem I depends upon \(h \). Indeed, from (3.7) of Theorem 7 we can state

Theorem 10. As \(h \to \infty \), \(T(0, t) \to T_L \) in a pointwise manner for all \(t \to 0 \).
Similarly we may assert:

Theorem 11. The solution to Problem I depends monotonically on h. In particular, if $(T^1(x, t), X_1(t))$ and $(T^2(x, t), X_2(t))$ are the solutions to Problem I for $h = h_1, h_2$, respectively and if $h_1 < h_2$, then $X_2(t) > X_1(t)$ for $t > 0$ and $T^2(x, t) > T^1(x, t)$ wherever they are both defined.

Proof: From Theorem 8, Corollary 6 and the maximum principle, there is some $t_0 > 0$ such that our assertion is true when $t < t_0$. This is seen by considering the difference

$$v(x, t) = T^2(x, t) - T^1(x, t).$$

at points where they are both defined. Let

$$t^* = \sup\{t \mid T^2(0, t) > T^1(0, t)\}, \quad t^{**} = \sup\{t \mid X_2(t) > X_1(t)\}. $$

By definition

$$v_x(0, t) = (h_1 - h_2)(T_L - T^2(0, t)) + h_1 V(0, t).$$

Suppose that $t^*, t^{**} < \infty$.

Claim 1. $t^* \neq t^{**}$.

Suppose that $t^* = t^{**}$. Then

a) $X_1(t^*) = X_2(t^*)$,

b) $X_1'(t^*) \geq X_2'(t^*)$,

c) $v(X_1(t^*), t^*) = 0$,

while for $t < t^*, 0 \leq x < X_1(t), v(x, t) > 0$. But by (b), $v_x(X_1(t^*), t^*) > 0$, which would contradict the corner minimum principle since

$$v(x, t) > v(X_1(t^*), t^*) \quad \text{for} \quad t < t^*, 0 \leq x < X_1(t).$$

Claim 2. $t^* < t^{**}$ is impossible.

On $[0, t^*], X_2(t) > X_1(t)$ whence $v(X_1(t), t) > 0$. Hence we must have $v(0, t^*) = 0$ with $v(0, t) > 0$ for $t < t^*$. But then $v(0, t^*)$ is a minimum value up to time t^* whence $v_x(0, t^*) > 0$, which contradicts

$$v_x(0, t^*) = (h_1 - h_2)(T_L - T^2(0, t^*)) < 0.$$

Claim 3. $t^{**} < t^*$ is impossible, since

$$T^2(X_2(t^{**}), t^{**}) = T^1(X_1(t^{**}), t^{**}) = T_c.$$

Thus Theorem 11 is proved.

The solution to Problem II (see Sec. 1) is given explicitly by [1]

$$X_\infty(t) = 2\lambda_\sqrt{\lambda t} \tag{4.1}$$

$$T^\infty(x, t) = T_L - (\Delta T/erf_\lambda) \text{erf}(x/2\sqrt{\lambda t}) \tag{4.2}$$

where λ is the root of

$$\lambda e^{2}\text{erf}_\lambda = St/\sqrt{\pi}. \tag{4.3}$$

We claim that this solution constitutes an upper bound for that of Problem I, namely

Theorem 12. Let $h > 0$, and let $X_h(t), T^h(x, t)$ denote the solution to Problem I for this value of the heat transfer coefficient. Then $X_\infty(t) > X_h(t)$ for all $t > 0$, and $T^\infty(x, t) > T^h(x, t)$ for all (x, t) for which both functions are defined.
Proof: We note first that since \(X_h(t) \leq (ht\Delta T/\rho H) \), we find \(X_\infty(t) > X_h(t) \) for
\[
0 < t < t_0 = (4\lambda^2 K_\rho H^2/\epsilon h^2 \Delta T^2).
\]
Moreover, for \(t < t_0 \), \(T^\infty(0, t) = T_L > T^h(0, t) \) and
\[
T^\infty(X_h(t), t) > T^h(X_h(t), t) = T_{cr}.
\]
Let \(t < t_0 \) and \(x \in [0, X_h(t)] \). Then by the mean value theorem
\[
T^\infty(x, t) - T^h(x, t) = (T^\infty(x, t) - T_{cr}) - (T^h(x, t) - T_{cr})
= (x - X_\infty(t)) T^\infty(x', t) - (x - X_h(t)) T^h(x'', t)
\]
for \(x', x'' \in (x, X_h(t)) \). But then from (4.2)
\[
T^\infty(x, t) - T^h(x, t) = [(X_\infty(t) - x) \Delta T/\sqrt{(\pi xt)} \text{erf} \lambda + (X_h(t) - x) \Delta T/(hx^2/4a)]
\geq (X_\infty(t) - x) \Delta T e^{-x^2/4at} - (X_h(t) - x)(h\Delta T/K)
\geq (X_h(t) - x) \Delta T e^{-x^2/\pi(\pi x)\text{erf} \lambda} - (h\Delta T/K)
> 0
\]
for \(t < t_1 = (e^{-\lambda^2 K/\epsilon h^2(\pi x)\text{erf} \lambda})^2 \). It is easily seen that \(t_1 < t_0 \). Thus for \(t < t_1 \) the solution to problem II bounds that of problem I.

Let
\[
t^* = \sup\{t: X_\infty(t) > X_h(t)\},
\]
\[
t^{**} = \sup\{t: T^\infty(x, t) > T^h(x, t)\}, \text{ for } 0 \leq x \leq \min (X_\infty(t), X_h(t)).
\]
Let
\[
v(x, t) = T^\infty(x, t) - T^h(x, t)
\]
where both functions are defined. Suppose that \(t^*, t^{**} < \infty \).

Claim 1: It is not possible to have \(t^{**} < t^* \).

Indeed, suppose that \(t^{**} < t^* \). Then \(v(x, t) \) would vanish at some point \((x, t^{**})\) for \(x \in (0, X_h(t^{**})) \) while it is positive on the line \(t = t_1/2 \) and at \(x = 0 \) and \(x = X_h(t) \) for \(t < t^{**} \), violating the maximum principle.

Claim 2: It is not possible to have \(t^* < \infty \).

For at \(t^* \),
\[
X_\infty(t^*) = X_h(t^*), \quad v(X_h(t^*), t^*) = 0,
\]
\[
v(x, t) > 0 \text{ for } t < t^*, \quad X'_h(t^*) \geq X'_\infty(t^*)
\]
whence
\[
v_x(X_h(t^*), t^*) \geq 0,
\]
and by the corner point maximum principle \(v(x, t) \) could not have a minimum at \((X_h(t^*), t^*)\). Thus the claim is proved, and \(t^*, t^{**} \) must be infinite, proving the theorem.

We now assert that as \(h \to \infty \) the solution to Problem I converges to that of Problem II.

Theorem 13. Let \(t > 0 \). Then as \(h \to \infty \),
\[
X_h(t) \to X_\infty(t), \quad T^h(x, t) \to T^\infty(x, t).
\]
The proof rests upon the following observation:

Lemma 2. The relation (2.8)

\[
\int_0^{X(t)} cpx[T(x, t) - T_{cr}]dx + (1/2) \rho H X(t)^2 = K \int_0^t [T(0, t') - T_{cr}]dt'
\]

holds for \(X_h, T^h\) as well as for \(X_\infty, T^\infty\).

Indeed, the factor \(x\) in the spatial integral prevents the flux at \(x = 0\) from entering into the equation. Of course

\[T^\infty(0, t') = T_L, \quad t' > 0.\]

Proof of Theorem 13. For any \(h > 0\), by Lemma 2,

\[
\int_0^{X_h(t)} cpx[T^\infty(x, t) - T_{cr}]dx + (1/2) \rho H X_h(t)^2 = K \int_0^t [T_L - T_{cr}]dt',
\]

and

\[
\int_0^{X_h(t)} cpx[T^h(x, t) - T_{cr}]dx + (1/2) \rho H X_h(t)^2 = K \int_0^t [T^h(0, t') - T_{cr}]dt'.
\]

Recalling that \(X_\infty(t) > X_h(t)\) and \(T^\infty(x, t) > T^h(x, t)\) and subtracting (4.5) from (4.4), we find, using the estimate (3.7) on \((T_L - T^0, 0)\), that

\[
\int_0^{X_h(t)} cpx[T^\infty(x, t) - T^h(x, t)]dx + \int_0^{X_h(t)} cpx[T^\infty(x, t) - T_{cr}]dx
\]

\[
+ (1/2) \rho H[X_\infty(t)^2 - X_h(t)^2] = K \int_0^t (T_L - T^h(0, t')) dt'
\]

\[
\leq (2K\sqrt{(2K\rho H \Delta T)(1 + St)}/h))^{1/2} (t),
\]

which immediately implies that as \(h \to \infty\)

\[X_h(t) \to X_\infty(t).\]

Consider the family of functions \(\{T^h(x, t)\}\) for \(h \to \infty\). By (3.6) and (3.7), for any \(x \in [0, X_h(t)]\)

\[-T(x, t) \leq h[T_L - T^h(0, t)] \leq (1 + St)(2K\rho H \Delta T)^{1/2}/t^{1/2}.\]

Hence for any \(t > 0\) the functions \(T^h(x, t)\) are equicontinuous; since they are all bounded by \(T^\infty(x, t)\) and monotonically increasing in \(h\) the Arzela-Ascoli lemma implies their uniform convergence on \([0, X_\infty(t)]\) (assuming them extended beyond \(X_h(t)\) as \(T_{cr}\)) to a limiting function. By (4.6) this limit must coincide with \(T^\infty(x, t)\) and the theorem is proved.

Relation (4.6) yields the following interesting observation.

Theorem 14. As \(t \to \infty\), \((X_h(t)/X_\infty(t)) \to 1\); that is, the fronts for finite and infinite \(h\) agree asymptotically.

Proof: From (4.6),

\[
(1/2)\rho H \left[X_\infty(t)^2 - X_h(t)^2 \right] \leq (2K\sqrt{(2K\rho H \Delta T)} (1 + St)\sqrt{t}/h.
\]

Division by \(X_\infty(t) = 2\lambda \sqrt{\alpha t}\) yields

\[0 \leq 1 - (X_h(t)/X_\infty(t))^2 \leq \theta/\sqrt{t}\]
for \(\theta = (c(1 + \text{St})/\lambda^2 h \sqrt{(2K\rho\Delta T/H)}) \), or

\[
(1 - (\theta/\sqrt{(t)}))^{1/2} \leq (X_h(t)/X_\infty(t)) < 1
\]

which, letting \(t \to \infty \), implies our result. We note that (4.7) provides a potentially useful bound on \(X_h(t) \),

\[
X_\infty(t) \sqrt{(1 - (\theta/\sqrt{(t)}))} \leq X_h(t) < X_\infty(t).
\]

5. A bound on the total system energy. If the motivation for studying problem I lies in the goal of storing heat in a phase-changing material, then the total heat stored by time \(t \),

\[
Q(t) = h \int_0^t [T_L - T(0, t')] dt'
\]

assumes a special importance. Using the relations (2.7, 2.8) we can obtain useful upper and lower bounds on \(Q(t) \). Thus we assert:

Theorem 15. At time \(t > 0 \),

\[
Q(t) \geq F_0(t) = (K\rho H/h) \sqrt{[1 + (2t\Delta T/K\rho H)]} - 1,
\]

\[
Q(t) \leq F_1(t) = K\rho H(1 + \text{St}/2)^2\left[1 + (2t\Delta T^2/K\rho H(1 + \text{St}/2)^2)\right]^{1/2} - 1/h.
\]

Moreover,

\[
0 \leq F_1 - F_0 \leq (x^2 t^2 h^4 c^2 \Delta T^2/K^4 H^2) = (t^2 h^4 \Delta T^2/K^2 p^2 H^2).
\]

Proof of (5.1). We note that

\[
\int_0^{x(t)} x \rho c [T(x, t) - T_{cr}] dx \leq X(t) \int_0^{x(t)} \rho c [T(x, t) - T_{cr}] dx
\]

while

\[
\int_0^t [T(0, t') - T_{cr}] dt' = -(1/h)Q(t) + t\Delta T,
\]

whence, after some manipulation, (2.7) implies

\[
[X(t) - (Q(t)/\rho H)]^2 + ((2K/\rho H) [ht\Delta T - Q(t)] - [Q(t)^2/(\rho H)^2]) \leq 0
\]

and since \(X(t) \) is real, we find

\[
(2K/\rho H) [ht\Delta T - Q(t)] \leq [Q(t)^2/(\rho H)^2].
\]

Further manipulation yields the bound (5.1).

To obtain the lower bound we note that (by (3.5))

\[
T(x, t) \leq T_L - [x\Delta T/X(t)],
\]

whence

\[
\int_0^{x(t)} \rho c [T(x, t) - T_{cr}] dx \leq [c\rho X(t)\Delta T/2]
\]

and so

\[
Q(t) \leq \rho H X(t)(1 + (1/2)\text{St}).
\]
But from (2.8),

\[X(t) \leq \sqrt{[(2K/\rho H)] \{ -[Q(t)/H] + t\Delta T \}} \]

whence (5.3) yields

\[Q(t) \leq [1 + (1/2)St] \sqrt{2K\rho H[t\Delta T - [Q(t)/H]]} \]

By straightforward manipulations we are then led to (5.2).

It is interesting to note that \(F_1 - F_0 = O(St^2) \). Indeed, if we introduce the nondimensional parameters

\[F_0 = (\alpha t/L^2), \quad Bi = (hL/K), \]

for \(L \) a representative length, then

\[F_1 - F_0 \leq (F_0Bi^2St)^2. \]

Thus the bounds (5.1, 5.2) are effective for small values of the parameters \(St \) and/or \(Bi \); they may be used to augment previously derived approximations for the surface temperature and moving boundary history [8].

References

Appendix: Proof of the corner point maximum principle. Let \(h(x, t) = |X(t) - x|^{3/2} + \beta |X(t) - x| \) in \(\bar{G}^o \), with \(\beta = \text{const} > 0 \) to be chosen. Note that

\[h > 0 \text{ in } \bar{G}^o, \quad h|_{\partial D} \equiv 0 \]

Then

\[Lh = \pm \{ \frac{3}{2} |x - X(t)|^{1/2} + \beta \} X'(t) - \frac{3}{2} |x - X(t)|^{-1/2} \]

where \(\pm \) correspond to the cases where \(X \) lies to the right or left of \(x \), respectively. We can thus choose \(N \) and \(\beta > 0 \) so small that \(Lh < 0 \) in \(\bar{G}^o \). Let \(v(P) = u(P) + \varepsilon h(P), \varepsilon > 0 \). Then
$Lv \leq \varepsilon Lh < 0$ in \hat{G}^o and $v \in C(\hat{G}^o)$. Thus $v(P)$ attains its maximum value in G^o on the boundary of G^o. Now

$$\partial G^o = \partial_0 G^o \cup \partial_1 G^o \cup \partial_2 G^o$$

where

$$\partial_0 G^o = \hat{G}^o \cap \{t = t_0\}, \quad \partial_1 G^o = \partial G^o \cap \partial D, \quad \partial_2 G^o = \hat{G}^o \cap \partial N,$$

Suppose $M = \max_{P \in \partial_0 G^o} v(P)$ is attained at a point $P^* \neq P_0$. There are three possibilities:

a) $P^* \in \partial_0 G^o$. Then at P^*, $v_1 \geq 0$, $v_{xx} \leq 0$, whence $Lv \geq 0$, which is not possible since $Lv < 0$ in \hat{G}^o. Thus $P^* \notin \partial_0 G^o - P_0$.

b) $P^* \in \partial_1 G^o$. Then $M = v(P^*) = u(P^*) \leq u(P_0) = v(P_0)$, whence $v(P_0)$ would equal M (which is claimed) or exceed M (which is not possible).

c) $P^* \in \partial_2 G^o$. Now $M = v(P^*) = u(P^*) + \varepsilon h(P^*)$. But $u(P^*) < u(P_0)$ and we may choose ε so small that

$$v(P^*) = u(P^*) + \varepsilon h(P^*) < u(P_0) = v(P_0).$$

Hence in all cases

$$u(P_0) \geq v(P), \ P \in \hat{G}^o.$$

Thus

$$0 > [v(P) - v(P_0)/|P - P_0|] = [v(P) - u(P_0)/|P - P_0|]$$

$$= [u(P) - u(P_0)/|P - P_0|] + \varepsilon [h(P) - h(P_0)/|P - P_0|]$$

or

$$[u(P) - u(P_0)/|P - P_0|] \leq -\varepsilon [h(P) - h(P_0)/|P - P_0|]$$

whence, by the form of h,

$$\lim_{P \to P_0, \ P \in \hat{G}^o} \frac{u(P) - u(P_0)}{|P - P_0|} < 0$$

for $P \to P_0$ in a nontangential direction. Thus the principle is proved.