Conservation laws with sharp inhomogeneities

Author:
William K. Lyons

Journal:
Quart. Appl. Math. **40** (1983), 385-393

MSC:
Primary 35L65; Secondary 76L05

DOI:
https://doi.org/10.1090/qam/693874

MathSciNet review:
693874

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**C. M. Dafermos,*The entropy rate admissibility criterion for solutions of hyperbolic conservation laws*, J. Diff. Eq.**14**, 202-212 (1973) MR**0328368****[2]**C. M. Dafermos,*Generalized characteristics and the structure of solutions of hyperbolic conservation laws*, Ind. Univ. Math. J.**26**, (1977) MR**0457947****[3]**C. M. Dafermos,*Characteristics in hyperbolic conservation laws: a study of the structure and asymptotic behavior of solutions*, in*Nonlinear analysis and mechanics***1**, ed. R. J. Knops, Pitman, 1977 MR**0481581****[4]**R. J. DiPerna,*Global solutions to a class of nonlinear hyperbolic systems of equations*, Comm. Pure Appl. Math.**26**, 1-28 (1973) MR**0330788****[5]**R. J. DiPerna,*Uniqueness of solutions to hyperbolic conservation laws*, Ind. Univ. Math.**28**, 137-188 (1979) MR**523630****[6]**A. F. Filippov,*Differential equations with discontinuous right-hand side*, Mat. Sbornik (N.S.)**51**(93), 99-128 (1960) MR**0114016****[7]**J. Glimm,*Solutions in the large for nonlinear hyperbolic systems of equations*, Comm. Pure Appl. Math.**18**, 697-715 (1965) MR**0194770****[8]**J. Glimm and P. D. Lax,*Decay of solutions of systems of nonlinear hyperbolic conservation laws*, Mem. Amer. Math. Soc.**101**(1970) MR**0265767****[9]**E. Hopf,*The partial differential equation*Comm. Pure Appl. Math.**3**, 201-230 (1950) MR**0047234****[10]**E. Hopf,*On the right weak solution of the Cauchy problem for a quasilinear equation of first order*, J. Math. Mech.**19**, 483-487 (1969) MR**0251357****[11]**A. Jeffrey,*Quasilinear hyperbolic systems and waves*, Pitman, 1976 MR**0417585****[12]**S. N. Kružkov,*First order quasilinear equations in several independent variables*, Mat. Sbornik (N.S.)**81 (123)**228-255 (1970. English translation: Math. USSR-Sbornik**10**, 217-243 (1970)**[13]**P. D. Lax,*Hyperbolic systems of conservation laws II*, Comm. Pure Appl. Math.**10**, 537-566 (1957) MR**0093653****[14]**P. D. Lax,*Shock waves and entropy*, in*Contributions to nonlinear functional analysis*, ed. E. A. Zarantonello, pp. 603-634, New York, Academic Press, 1971 MR**0367471****[15]**P. D. Lax,*Hyperbolic systems of conservation laws and the mathematical theory of shcok waves*, Conference Board of the Mathematical Sciences, Monograph No. 11, SIAM, 1973 MR**0350216****[16]**T. -P. Liu,*Existence and uniqueness theorems for Riemann problems*, Trans. Amer. Math. Soc.**213**, 375-382 (1975) MR**0380135****[17]**T. -P. Liu,*Initial-boundary value problems for gas dynamics*, Arch. Rational Mech. Anal.**64**, 137-168 (1977) MR**0433017****[18]**W. K. Lyons,*The single conservation law of discontinuous media*, Ph.D. Thesis, Brown Univ., 1980 MR**2631144****[19]**T. Nishida,*Global solutions for an initial boundary value problem of a quasilinear hyperbolic system*, Proc. Japan Acad.**44**, 642-646 (1968) MR**0236526****[20]**O. A. Oleinik,*Discontinuous solutions of nonlinear differential equations*, Uspekhi Mat. Nauk (N.S.)**12**, 3-73 (1957) MR**0094541****[21]**O. A. Oleinik,*Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation*, Uspekhi Mat. Nauk (N.S.)**14**, 165--70 (1959) MR**0117408****[22]**A. I. Vol'pert,*The spaces BV and quasilinear equations*, Math USSP**Sb2**, 225-267 (1967) MR**0216338**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L65,
76L05

Retrieve articles in all journals with MSC: 35L65, 76L05

Additional Information

DOI:
https://doi.org/10.1090/qam/693874

Article copyright:
© Copyright 1983
American Mathematical Society