Conservation laws with sharp inhomogeneities

Author:
William K. Lyons

Journal:
Quart. Appl. Math. **40** (1983), 385-393

MSC:
Primary 35L65; Secondary 76L05

DOI:
https://doi.org/10.1090/qam/693874

MathSciNet review:
693874

Full-text PDF

References | Similar Articles | Additional Information

**[1]**Constantine M. Dafermos,*The entropy rate admissibility criterion for solutions of hyperbolic conservation laws*, J. Differential Equations**14**(1973), 202–212. MR**0328368**, https://doi.org/10.1016/0022-0396(73)90043-0**[2]**C. M. Dafermos,*Generalized characteristics and the structure of solutions of hyperbolic conservation laws*, Indiana Univ. Math. J.**26**(1977), no. 6, 1097–1119. MR**0457947**, https://doi.org/10.1512/iumj.1977.26.26088**[3]**C. M. Dafermos,*Characteristics in hyperbolic conservation laws. A study of the structure and the asymptotic behaviour of solutions*, Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh, 1976), Vol. I, Pitman, London, 1977, pp. 1–58. Res. Notes in Math., No. 17. MR**0481581****[4]**Ronald J. DiPerna,*Global solutions to a class of nonlinear hyperbolic systems of equations*, Comm. Pure Appl. Math.**26**(1973), 1–28. MR**0330788**, https://doi.org/10.1002/cpa.3160260102**[5]**Ronald J. DiPerna,*Uniqueness of solutions to hyperbolic conservation laws*, Indiana Univ. Math. J.**28**(1979), no. 1, 137–188. MR**523630**, https://doi.org/10.1512/iumj.1979.28.28011**[6]**A. F. Filippov,*Differential equations with discontinuous right-hand side*, Mat. Sb. (N.S.)**51 (93)**(1960), 99–128 (Russian). MR**0114016****[7]**James Glimm,*Solutions in the large for nonlinear hyperbolic systems of equations*, Comm. Pure Appl. Math.**18**(1965), 697–715. MR**0194770**, https://doi.org/10.1002/cpa.3160180408**[8]**James Glimm and Peter D. Lax,*Decay of solutions of systems of nonlinear hyperbolic conservation laws*, Memoirs of the American Mathematical Society, No. 101, American Mathematical Society, Providence, R.I., 1970. MR**0265767****[9]**Eberhard Hopf,*The partial differential equation 𝑢_{𝑡}+𝑢𝑢ₓ=𝜇𝑢ₓₓ*, Comm. Pure Appl. Math.**3**(1950), 201–230. MR**0047234**, https://doi.org/10.1002/cpa.3160030302**[10]**Eberhard Hopf,*On the right weak solution of the Cauchy problem for a quasilinear equation of first order*, J. Math. Mech.**19**(1969/1970), 483–487. MR**0251357****[11]**A. Jeffrey,*Quasilinear hyperbolic systems and waves*, Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1976. Research Notes in Mathematics, No. 5. MR**0417585****[12]**S. N. Kružkov,*First order quasilinear equations in several independent variables*, Mat. Sbornik (N.S.)**81 (123)**228-255 (1970. English translation: Math. USSR-Sbornik**10**, 217-243 (1970)**[13]**P. D. Lax,*Hyperbolic systems of conservation laws. II*, Comm. Pure Appl. Math.**10**(1957), 537–566. MR**0093653**, https://doi.org/10.1002/cpa.3160100406**[14]**Peter D. Lax,*The formation and decay of shock waves*, Visiting scholars’ lectures (Texas Tech Univ., Lubbock, Tex., 1970/71), Texas Tech Press, Texas Tech Univ., Lubbock, Tex., 1971, pp. 107–139. Math. Ser., No. 9. MR**0367471****[15]**Peter D. Lax,*Hyperbolic systems of conservation laws and the mathematical theory of shock waves*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR**0350216****[16]**Tai Ping Liu,*Existence and uniqueness theorems for Riemann problems*, Trans. Amer. Math. Soc.**212**(1975), 375–382. MR**0380135**, https://doi.org/10.1090/S0002-9947-1975-0380135-2**[17]**Tai Ping Liu,*Initial-boundary value problems for gas dynamics*, Arch. Rational Mech. Anal.**64**(1977), no. 2, 137–168. MR**0433017**, https://doi.org/10.1007/BF00280095**[18]**William Kimbel Lyons,*THE SINGLE CONSERVATION LAW OF DISCONTINUOUS MEDIA*, ProQuest LLC, Ann Arbor, MI, 1980. Thesis (Ph.D.)–Brown University. MR**2631144****[19]**Takaaki Nishida,*Global solution for an initial boundary value problem of a quasilinear hyperbolic system*, Proc. Japan Acad.**44**(1968), 642–646. MR**0236526****[20]**O. A. Oleĭnik,*Discontinuous solutions of non-linear differential equations*, Uspehi Mat. Nauk (N.S.)**12**(1957), no. 3(75), 3–73 (Russian). MR**0094541****[21]**O. A. Oleĭnik,*Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation*, Uspehi Mat. Nauk**14**(1959), no. 2 (86), 165–170 (Russian). MR**0117408****[22]**A. I. Vol′pert,*Spaces 𝐵𝑉 and quasilinear equations*, Mat. Sb. (N.S.)**73 (115)**(1967), 255–302 (Russian). MR**0216338**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L65,
76L05

Retrieve articles in all journals with MSC: 35L65, 76L05

Additional Information

DOI:
https://doi.org/10.1090/qam/693874

Article copyright:
© Copyright 1983
American Mathematical Society