Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On a linear age-dependent population diffusion model


Author: Michel R. Langlais
Journal: Quart. Appl. Math. 40 (1983), 447-460
MSC: Primary 45K05; Secondary 35K99, 92A15
DOI: https://doi.org/10.1090/qam/693877
MathSciNet review: 693877
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] . G. diBlasio and L. Lamberti, An initial boundary value problem for age population diffusion, SIAM J. Appl. Math. 35, 530-615 (1978) MR 507959
  • [2] M. G. Garroni and M. Langlais, Age-dependent population diffusion with external constraints, J. Math. Biol., to appear MR 666005
  • [3] M. E. Gurtin, A system of equations for age-dependent population diffusion, J. Theor. Biol. 40 389-392 (1973)
  • [4] M. E. Gurtin and R. C. MacCamy, On the diffusion of biological population, Math. Biosci. 38, 35-49 (1977) MR 0682594
  • [5] M. E. Gurtin and R. C. MacCamy, Some simple models for nonlinear age-dependent population dynamics, Math. Biosci. 43, 199-211 (1979) MR 527566
  • [6] F. Hoppensteadt, Mathematical theories of populations: demographics, genetics, and epidemics, Soc. Ind. Appl. Math., Philadelphia (1975) MR 0526771
  • [7] H. L. Langhaar, General population theory in age-time continuum, J. Franklin Inst. 293, 199-214 (1972) MR 0309579
  • [8] M. Langlais, Sur un problème de dynamique de population, Tech. Rep. A. A. I., University of Bordeaux 1 (1980)
  • [9] M. Langlais, Thesis, University of Bordeaux 1 (1981)
  • [10] J. L. Lions and E. Magènes, Problèmes aux limites homogènes et applications, tôme 1, Dunod, Paris (1968)
  • [11] R. C. MacCamy, A population model with nonlinear diffusion, J. Diff. Eqs. 39, 52-72 (1981) MR 602431

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 45K05, 35K99, 92A15

Retrieve articles in all journals with MSC: 45K05, 35K99, 92A15


Additional Information

DOI: https://doi.org/10.1090/qam/693877
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society