Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A mathematical model of solar flares


Authors: Jean Heyvaerts, Jean-Michel Lasry, Michelle Schatzman and Patrick Witomski
Journal: Quart. Appl. Math. 41 (1983), 1-30
MSC: Primary 85A30; Secondary 58E99
DOI: https://doi.org/10.1090/qam/700658
MathSciNet review: 700658
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The phenomenon of solar flares is modeled assuming that the magnetic field is force-free and that its evolution is quasi-static. This model is simplified so as to be tractable and yields a semi-linear elliptic equation in a halfplane depending on a parameter $ \lambda $ which describes the time evolution. It is proved that there are (at least) two branches of solutions which have distinct asymptotic behaviors at infinity. The upper branch exists for all $ \lambda > 0$, but the lower branch exists only on a finite interval $ \left[ {0,{\lambda ^c}} \right]$. As stable solutions must have the same asymptotic behavior as the lower branch of solutions, and as this is impossible after $ {\lambda ^c}$, we contend that no stable solution exists after $ {\lambda ^c}$ and that a solar flare is thus triggered.


References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math. 12, 623-727 (1959) MR 0125307
  • [2] A. Bahri, thèse d'état, Université Pierre et Marie Curie, Paris, 1981
  • [3] H. Berestycki, thèse d'état, Université Pierre et Marie Curie, Paris, 1981
  • [4] H. Berestycki and P. L. Lions, Existence of solitary waves in nonlinear Klein-Gordon equations, Part I: the ground state; Part II: existence of infinitely many bound states, Arch. Rat. Mech. Anal., 1981
  • [5] R. Chiapinelli and C. A. Stuart, Bifurcations when the linearization has no eigenvalues, J. Diff. Eqs. 30, 296-307 (1978)
  • [6] M. G. Crandall and P. H. Rabinowitz, Nonlinear Sturm-Liouville eigenvalue problems and topologival degree, J. Math. Mech. 19, 161-180 (1969-70) MR 0259232
  • [7] R. Courant and D. Hilbert, Methods of mathematical physics, II, Interscience, New York, 1963
  • [8] M. J. Esteban, thèse de troisième cycle, Université Pierre et Marie Curie, Paris, 1981
  • [9] G. Geymonat and P. Grisvard, Problèmes aux limites elliptiques dans L$ ^{p}$, Secrétariat mathématique d'Orsay, Orsay, 1964
  • [10] B. Gidas, Y. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68, 209-243 (1979) MR 544879
  • [11] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, preprint MR 619749
  • [12] H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of bifurcation theory, ed. P. H. Rabinowitz, Academic Press, New York, 1977 MR 0455353
  • [13] F. Kikuchi, Finite-element approximation to bifurcaton problems of turning-point type, in Computing methods in applied sciences and engineering, ed. R. Glowinski and J. L. Lions, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1979
  • [14] K. Kirchgässner and J. Scheurle, On the bounded solutions of a semilinear elliptic equation in a strip, J. Diff. Eqs. 32, 119-148 (1979) MR 532767
  • [15] T. Küpper, The lowest point of the continuous spectrum as a bifurcation point, Report 78.12 of the Mathematics Department of the University of Köln, 1978
  • [16] T. Küpper, On minimal nonlinearities which permit bifurcation from the continuous spectrum, Report 78.25 of the Mathematics Department of the University of Köln, 1978
  • [17] T. Küpper and D. Reimer, Necessary and sufficient conditions for bifurcation from the continuous spectrum, Nonlinear Anal. 3, 555-561 (1979)
  • [18] P. L. Lions, Thèse d'état, Université Pierre et Marie Curie, Paris, 1979
  • [19] G. Moore and A. Spence, The calculation of turning points of nonlinear equations, SIAM J. Numer. Anal. 17, (1980) MR 584731
  • [20] J. C. Paumier, Calcul numérique des points de retournement, séminaire, Université Pierre et Marie Curie, Laboratoire d'analyse numérique, 1980
  • [21] M. Protter and H. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N. J., 1971 MR 0219861
  • [22] L. Reinhardt, Sur la solution numérique de problèmes aux limites non linéaires par des méthodes de continuation, thèse de troisième cycle, Université Pierre et Marie Curie, Paris, 1980
  • [23] C. A. Stuart, Global properties of components of solutions of nonlinear second-order ordinary differential equations on the half-line, Ann. Sc. Norm. Sup. Pisa 11, 265-286 (1975)
  • [24] C. A. Stuart, Bifurcation without eigenvalues, J. Diff. Eqs. 36, 391-407 (1980) MR 576158

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 85A30, 58E99

Retrieve articles in all journals with MSC: 85A30, 58E99


Additional Information

DOI: https://doi.org/10.1090/qam/700658
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society