Skip to Main Content
Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The dynamics of simple fluids in steady circular shear


Author: J. D. Goddard
Journal: Quart. Appl. Math. 41 (1983), 107-118
MSC: Primary 76A10
DOI: https://doi.org/10.1090/qam/700665
MathSciNet review: 700665
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An isotropic simple fluid of constant density $\rho$ is confined between two infinite horizontal planes which rotate steadily about separate vertical $\left ( z \right )$ axes with common angular velocity $\omega$. We show that at least one solution to the exact equations of motion is determined by the differential equation \[ \frac {d}{{dz}}\left ( {\eta \frac {{du}}{{dz}}} \right ) - i\rho \omega u = 0\] where $u\left ( z \right )$ is a complex variable representing the horizontal velocity and $\eta \left ( {\left | {du/dz} \right |,\omega } \right )$ is a complex shear modulus. This equation represents the extension to nonlinear viscoelasticity of the previous works of Berker and of Abbott and Walters on linear viscoelastic fluids, for which $\eta$ reduces to the usual dynamic viscosity $\eta *\left ( \omega \right )$


References [Enhancements On Off] (What's this?)

    A. C. Pipkin, Controllable viscometric flows, Quart. Appl. Math. 26, 87 (1967)
  • Wan-Lee Yin and Allen C. Pipkin, Kinematics of viscometric flow, Arch. Rational Mech. Anal. 37 (1970), no. 2, 111–135. MR 1553544, DOI https://doi.org/10.1007/BF00281665
  • A. C. Pipkin and R. I. Tanner, A survey of theory and experiment in viscometric flows of viscoelastic liquids, Mechanics Today 1, 262 (1972) J. D. Goddard, Polymer fluid mechanics, Adv. Appl. Mech. 19, 143, Academic Press (1979) R. R. Huilgol, On the properties of the motion with constant stretch history occurring in the Maxwell rheometer, Trans. Soc. Rheol. 13, 513 (1969) K. Walters, Rheometry, Chapman and Hall/J. Wiley, pp. 168–172 (1975) J. D. Goddard, A comment on the material functions for steady circular shear in the orthogonal rheometer, J. Non-Newtonian Fluid Mech. 4, 365 (1979) T. N. G. Abbott, and K. Walters, Rheometrical flow systems. Part 2. Theory for the orthogonal rheometer, including an exact solution of the Navier-Stokes equations, J. Fluid Mech. 40, 205 (1970)
  • Ratip Berker, Intégration des équations du mouvement d’un fluide visqueux incompressible, Handbuch der Physik, Bd. VIII/2, Springer, Berlin, 1963, pp. 1–384 (French). MR 0161513
  • R. Berker, An exact solution of the Navier-Stokes equation. The vortex with curvilinear axis, Internat. J. Engrg. Sci. 20 (1982), no. 2, 217–230. MR 644043, DOI https://doi.org/10.1016/0020-7225%2882%2990017-9
  • H. A. Waterman, Inertia effects in rheometrical flow systems. Part I. The orthogonal rheometer, Rheologica Acta 15, 444 (1976) R. Drouot, Sur un cas d’intégration des équations du movement d’un fluide du deuxieme ordre, Comptes rendus 265A, 300 (1967) D. G. Knight, Flow between eccentric disks rotating at different speeds: inertia effects, J. Appl. Math. and Phys. (ZAMP) 31, 309 (1980) R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids, Vol. 1, J. Wiley and Sons, New York (1977)
  • Daniel D. Joseph, Rotating simple fluids, Arch. Rational Mech. Anal. 66 (1977), no. 4, 311–344. MR 459224, DOI https://doi.org/10.1007/BF00248900

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76A10

Retrieve articles in all journals with MSC: 76A10


Additional Information

Article copyright: © Copyright 1983 American Mathematical Society