Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Dynamic behavior from asymptotic expansions

Authors: Jack K. Hale and Luiz Carlos Pavlu
Journal: Quart. Appl. Math. 41 (1983), 161-168
MSC: Primary 34C25; Secondary 34C27
DOI: https://doi.org/10.1090/qam/700669
MathSciNet review: 700669
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to discuss stability properties of solutions of periodic and almost-periodic differential equations containing a small parameter. The existence of the solution can be obtained in the first approximation but the stability only after $ k$ approximations. We obtain the results using asymptotic expansions, higher-order averaging and the concept of exponential hyperbolicity of order $ k$.

References [Enhancements On Off] (What's this?)

  • [1] W. A. Coppel, Dichotomies in stability theory, Springer-Verlag, 1978 MR 0481196
  • [2] W. A. Coppel, Dichotomies and reducibility, J. Diff. Eqs. 3, 500-521 (1973) MR 0223651
  • [3] A. M. Fink, Almost periodic differential equations, Springer-Verlag, 1974 MR 0460799
  • [4] J. K. Hale, Ordinary differential equations, 2nd ed., Robert E. Krieger Publishing Co., New York, 1980 MR 587488
  • [5] M. A. Krasnosels'ki, V. S. Burd and Y. S. Kolesov, Nonlinear almost periodic oscillations, John Wiley & Sons, New York, 1973 MR 0344595
  • [6] J. A. Murdock, Some mathematical aspects of spin orbit resonance, Cel. Mech. 8, 237-253 (1978) MR 513723
  • [7] J. A. Murdock and C. Robinson, Qualitative dynamics from asymptotic expansions--local theory, J. Diff. Eqs. 36, 425-441 (1980)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34C25, 34C27

Retrieve articles in all journals with MSC: 34C25, 34C27

Additional Information

DOI: https://doi.org/10.1090/qam/700669
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society