Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A variational-iterative approximate solution of the Thomas-Fermi equation


Authors: B. L. Burrows and P. W. Core
Journal: Quart. Appl. Math. 42 (1984), 73-76
MSC: Primary 65L60; Secondary 81G35
DOI: https://doi.org/10.1090/qam/736506
MathSciNet review: 736506
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Variational-iterative solutions of the Thomas-Fermi equation are obtained. The rate of convergence of the iterations are examined and the results compared with previous calculations.


References [Enhancements On Off] (What's this?)

  • [1] N. Anderson and A. M. Arthurs, Variational solutions of the Thomas-Fermi equation, Quart. J. App. Math. 39, 172-129 (1981) MR 613956
  • [2] B. L. Burrows and A. J. Perks, Complementary variational principles and variational-iterative principles, J. Phys. A. Math. Gen. 14, 797-808 (1981) MR 609825
  • [3] B. L. Burrows and P. W. Core, Complementary variational principles and variational-iterative principles with geometric interpretations, J. Math. Anal. Appl. (to appear) MR 728519
  • [4] B. L. Burrows and P. W. Core, A variational-iterative technique applied to quantum mechanical calculations, J. Phys. A. Math. Gen. (to appear) MR 737985
  • [5] L. D. Landau and E. M. Lifshitz, Quantum mechanics, Pergamon Press, Oxford, 1958

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 65L60, 81G35

Retrieve articles in all journals with MSC: 65L60, 81G35


Additional Information

DOI: https://doi.org/10.1090/qam/736506
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society