Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

On the method of strained parameters and the method of averaging


Author: D. P. Mason
Journal: Quart. Appl. Math. 42 (1984), 77-85
MSC: Primary 34C29
DOI: https://doi.org/10.1090/qam/736507
MathSciNet review: 736507
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The method of multiple scales can be modified to remove remaining undesirable features in the perturbation solution by expanding available parameters in the equation(s) (Veronis [1]). Corresponding modifications to the Lindstedt-Poincaré method of strained parameters and the method of averaging are investigated and illustrated using the Duffing equation. It is found that a solution to the Duffing equation with no secular terms in either the amplitude or the frequency can be obtained simply by expanding the parameter in the equation without making the near-identity transformation of the independent variable associated with the Lindstedt-Poincaré technique.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34C29

Retrieve articles in all journals with MSC: 34C29


Additional Information

DOI: https://doi.org/10.1090/qam/736507
Article copyright: © Copyright 1984 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website