On linearly coupled relaxation oscillations

Authors:
Jacques Bélair and Philip Holmes

Journal:
Quart. Appl. Math. **42** (1984), 193-219

MSC:
Primary 58F10; Secondary 34C15, 34E15, 70K05

DOI:
https://doi.org/10.1090/qam/745099

MathSciNet review:
745099

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the dynamical behavior of a pair of linearly coupled relaxation oscillators. In such systems vastly different time scales play a crucial rôle, and solutions may be viewed as consisting of portions of slow drift linked by rapid jumps. This feature enables us to reduce the analysis from four dimensional phase space to that of a two dimensional system with discontinuous but well determined behavior at certain points on the phase plane. We determine the existence and stability of periodic motions for identical oscillators and oscillators with an uncoupled frequency ratio of . We give additional details on nonperiodic motions for the special case of .

**[J]**Bélair [1983a],*Phase locking in linearly coupled relaxation oscillators*, Ph. D. Thesis, Cornell Univ.**[J]**Bélair [1983b],*Une application de l'analyse nonstandard dans l'etude d'oscillateurs de relaxation*, preprint**[E]**Benoit, J.--L. Callot, F. Diener and M. Diener [1980],*Chasse au canard*, IRMA**[R]**Bowen [1975]*Equilibrium states and the ergodic theory of Axiom A diffeomorphism*, Lecture Notes in Math., vol. 470, Springer, Heidelberg MR**0442989****[M]**Cartwright and J. E. Littlewood [1945],*On nonlinear differential equations of the second order*: I.*The equation*, large, J. London Math. Soc.**20**, 180-189 MR**0016789****[E]**A. Coddington and N. Levinson [1955],*Theory of ordinary differential equations*, McGraw Hill, New York MR**0069338****[M]**Davis [1977],*Applied nonstandard analysis*, Wiley, New York MR**0505473****[J]**Flaherty and F. Hoppensteadt [1978],*Frequency entrainment of a forced van der Pol oscillator*, Studies in Appl. Math.**58**, 5-15 MR**0499449****[J]**--P. Gollub, T. O. Brunner and B. G. Danly [1978],*Periodicity and chaos in coupled nonlinear oscillators*, Science**200**, 48-50**[J]**Grasman and M. J. W. Jansen [1979],*Mutually synchronized relaxation oscillators and prototypes and oscillating systems in biology*, J. Math. Biol.**7**171-197 MR**648978****[J]**Grasman, H. Nijmeijer and E. J. M. Velig [1982],*Singular perturbations and a mapping on an interval for the forced van der Pol relaxation oscillator*(preprint TW 221/82, Mathematisch Centrum, 413 Kruislaan, Amsterdam)**[J]**Grasman, E. J. M. Velig and G. M. Willems [1976],*Relaxation oscillators governed by a van der Pol equation with periodic forcing terms*, SIAM J. Appl. Math.**31**, 667--676 MR**0432975****[J]**Guckenheimer [1980],*Bifurcations of dynamical systems*Dynamical Systems, C.I.M.E. Lectures Bressanone, Italy, June 1978, Progress in Mathematics #8, Birkhauser, Boston MR**589591****[J]**Haag [1943],*Etude asymptotique des oscillators de relaxation*Ann. Sci. Ecole Norm. Sup. (3); 60, 35-111 MR**0014538****[M]**Jirsch and S. Smale [1974],*Differential equations, dynamical systems, and linear algebra*, Academic Press, New York MR**0486784****[J]**Kevorkian and J. D. Cole [1981],*Perturbation methods in applied mathematics*, Appl. Math. Sci.**34**, Springer, New York MR**608029****[N]**Levinson [1949],*A second order differential equation with singular solutions, Ann. Math*.**50**, 127-153 MR**0030079****[M]**Levi [1981],*Qualitative analysis of the periodically forced relaxation oscillations*, Memoirs of the AMS**32**, #244, Providence MR**617687****[R]**Lutz and M. Goze [1981],*Nonstandard analysis*, Lecture Notes in Math., Vol. 881, Springer, Heidelberg MR**643624****[G]**Reeb [1974],*Seance-debat sur l' Analyse Non-standard*, Gazette des Mathematicians**8**, 8-14**[A]**Robinson [1974],*Nonstandard analysis*, 2nd edition, American Elsevier, New York**[J]**J. Stoker [1950],*Nonlinear vibrations in mechanical and electrical systems*, Interscience, New York MR**0034932****1.**-[1980],*Periodic forced vibrations of systems of relaxation oscillators*, Comm. Pure Math.**33**, 215-240**[K]**Stroyan and W. A. J. Luxembourg [1975],*Introduction to the theory of infinitesimals*, Academic Press, New York**[F]**Takens [1976],*Constrained equations: a study of implicit differential equatins and their discontinuous solutions*, Structural Stability, the Theory of Catastrophes, and Applications in the Sciences (P. Hilton, ed.) Lecture Notes in Math. Vol. 525, Springer, Heidelberg, 147-243 MR**0478236****[B]**van der Pol [1926],*On relaxation-oscillations*, Phil. Mag., 7th Ser. 2, 978-992**[B]**van der Pol and J. van der Mark [1928],*The heartbeat considered as a relaxation oscillator, and an electrical model of the heart*, Phil. Mag., 7th Ser. 6, 763-775**[E]**C. Zeeman [1973],*Differential equations for the heartbeat and nerve impulse*, Dynamical Systems (M. M. Peixoto, ed.) Academic Press, New York, 683-741 MR**0342207**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
58F10,
34C15,
34E15,
70K05

Retrieve articles in all journals with MSC: 58F10, 34C15, 34E15, 70K05

Additional Information

DOI:
https://doi.org/10.1090/qam/745099

Article copyright:
© Copyright 1984
American Mathematical Society