Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A coordinate transformation for the porous media equation that renders the free boundary stationary


Authors: Morton E. Gurtin, Richard C. MacCamy and Eduardo A. Socolovsky
Journal: Quart. Appl. Math. 42 (1984), 345-357
MSC: Primary 35K65; Secondary 76S05
DOI: https://doi.org/10.1090/qam/757173
MathSciNet review: 757173
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. A. Peletier, The porous media equation, Application of Nonlinear Analysis in the Physical Sciences (eds. H. Amann, N. Bazley, K. Karchgassner), Pitman (1981), 229-241 MR 659697
  • [2] O. A. Oleinik, A. S. Kalishnikov and Y.-L. Chzou, The Cauchy problem and boundary value problems for equations of the type of non-stationary filtration, Izv. Akad. Nauk SSR Ser. Mat. 22, 667-704 (1958) MR 0099834
  • [3] A. S. Kalishnikov, On the occurrence of singularities in the solutions of the equation of nonstationary filtration, Vych. Mat. i Mat. Fis. 7, 440-444 (1967)
  • [4] D. G. Aronson, Regularity properties of flows through porous media, SIAM J. Appl. Math. 17, 461-468 (1969) MR 0247303
  • [5] -, Regularity properties of flows through porous media: the interface, Arch. Rat. Mech. Anal. 37, 1-10 (1970) MR 0255996
  • [6] B. F. Knerr, The porous medium equation in one-dimension, Trans. Amer. Math. Soc. 234, 381-415 (1977) MR 0492856
  • [7] E. DiBenedetto and D. C. Hoff, An interface tracking algorithm for the porous medium equation, Math. Res. Center, Univ. of Wisconsin, Tech. Summary Report 1489 (1983)
  • [8] J. L. Gravelea and P. Jamet, A finite difference approach to some degenerate nonlinear parabolic equations, SIAM J. Appl. Math. 20, 199-223 (1971) MR 0290600
  • [9] M. Mimura and K. Tomoida, Numerical approximations for interface curves to a porous media equation (to appear)
  • [10] M. E. Gurtin, An introduction to continuum mechanics, Academic Press (1981) MR 636255
  • [11] D. G. Aronson, Regularity properties of flows through porous media: A counterexample, SIAM J. Appl. Math. 19, 299-207 (1970) MR 0265774
  • [12] J. L. Vazquez, Asymptotic behaviour and propagation properties of the one-dimensional flow of a gas in a porous medium, Trans. Amer. Math. Soc. 277, 507-528 (1983) MR 694373
  • [13] R. E. Pattle, Diffusion from an instantaneous point source with a concentration dependent coefficient, Quart. J. Mech. Appl. Math. 12, 407-409 (1959) MR 0114505
  • [14] L. A. Caffarelli and A. Friedman, Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Indiana Univ. Math. J. 29, 361-391 (1980) MR 570687

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35K65, 76S05

Retrieve articles in all journals with MSC: 35K65, 76S05


Additional Information

DOI: https://doi.org/10.1090/qam/757173
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society