Macroscopic global modeling of binary alloy solidification processes

Authors:
V. Alexiades, D. G. Wilson and A. D. Solomon

Journal:
Quart. Appl. Math. **43** (1985), 143-158

MSC:
Primary 80A20

DOI:
https://doi.org/10.1090/qam/793522

MathSciNet review:
793522

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A macroscopic mathematical model is constructed describing the evolution of the phases of a binary alloy or mixture undergoing solidification under the action of simultaneous conduction of heat and diffusion of solute. The formulation is global, in the form of a pair of conservation laws valid over the whole region occupied by the alloy in a weak (distributional) sense. Thus it is especially convenient for numerical solution since it does not require tracking of the interface, which, in fact, may develop into a ``mushy zone".

**[1]**Vasilios Alexiades,*Rapid freezing of dilute alloys*, IMA J. Appl. Math.**30**(1983), no. 1, 61–79. MR**711103**, https://doi.org/10.1093/imamat/30.1.67**[2]**Vasilios Alexiades and John R. Cannon,*Free boundary problems in solidification of alloys*, SIAM J. Math. Anal.**11**(1980), no. 2, 254–264. MR**559867**, https://doi.org/10.1137/0511025**[3]**A. Bermudez and C. Saguez,*Etude Numerique d'un Probleme de solidification d'un alliage*, INRIA Report, 1981**[4]**B. Chalmers,*Principles of Solidification*, Wiley, 1964**[5]**S. H. Cho and J. E. Sunderland,*Heat conduction problems with melting or freezing*, J. Heat Transfer,**91C**, 421-426 (1969)**[6]**J. Christian,*The theory of transformations in metals and alloys*, Pergamon, Oxford, 1965**[7]**A. B. Crowley and J. R. Ockendon,*On the numerical solution of an alloy solidification problem*, Int. J. Heat Mass Transfer,**22**, 941-947 (1979)**[8]**C. M. Elliott and J. R. Ockendon,*Weak and variational methods for moving boundary problems*, Research Notes in Mathematics, vol. 59, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR**650455****[9]**A. Fasano and M. Primicerio,*General free-boundary problems for the heat equation. I*, J. Math. Anal. Appl.**57**(1977), no. 3, 694–723. MR**0487016**, https://doi.org/10.1016/0022-247X(77)90256-6

Antonio Fasano and Mario Primicerio,*General free-boundary problems for the heat equation. II*, J. Math. Anal. Appl.**58**(1977), no. 1, 202–231. MR**0487017**, https://doi.org/10.1016/0022-247X(77)90239-6

Antonio Fasano and Mario Primicerio,*General free-boundary problems for the heat equation. III*, J. Math. Anal. Appl.**59**(1977), no. 1, 1–14. MR**0487018**, https://doi.org/10.1016/0022-247X(77)90088-9**[10]**G. J. Fix,*Numerical methods for alloy solidification problems*, pp. 109-128 in [22]**[11]**A. A. Lacey. J. R. Ockendon and A. B. Tayler,*Modelling mushy regions*, IMA J. Appl. Math. (to appear)**[12]**A. A. Lacey and M. Shillor,*The existence and stability of regions with superheating in the classical two-phase one-dimensional Stefan problem with heat sources*, IMA J. Appl. Math.**30**(1983), no. 2, 215–230. MR**714070**, https://doi.org/10.1093/imamat/30.2.215**[13]**J. S. Langer,*Instabilities and pattern formation in crystal growth*, Review Mod. Physics,**52**, 1-28 (1980)**[14]**G. H. Meyer,*A numerical method for the solidification of a binary alloy*, Int. J. Heat Mass Transfer,**24**, 778-781 (1981)**[15]**J. R. Ockendon and W. R. Hodgkins,*Moving boundary problems in heat flow and diffusion*, Clarendon Press, Oxford, 1975**[16]**F. Rosenberger,*Fundamentals of crystal growth, I*, Springer-Verlag, Berlin, 1979**[17]**L. I. Rubenšteĭn,*The Stefan problem*, American Mathematical Society, Providence, R.I., 1971. Translated from the Russian by A. D. Solomon; Translations of Mathematical Monographs, Vol. 27. MR**0351348****[18]**A. D. Solomon, D. G. Wilson, and V. Alexiades,*Explicit solutions to phase change problems*, Quart. Appl. Math.**41**(1983/84), no. 2, 237–243. MR**719507**, https://doi.org/10.1090/S0033-569X-1983-0719507-5**[19]**A. D. Solomon, D. G. Wilson and V. Alexiades,*A numerical simulation of a binary alloy solidification process*, SIAM J. Scient. Stat. Comp., to appear.**[20]**A. B. Tayler,*The mathematical formulation of Stefan problems*, pp. 120-137 in [14].**[21]**R. H. Tien and G. E. Geiger,*A heat transfer analysis of the solidification of a binary entectic system*, J. Heat Transfer,**89C**, 230-234 (1967)**[22]**R. Trivedi,*Theory of dendritic growth during the directional solidification of binary alloys*, Journal of Crystal Growth,**49**, 219-232 (1980)**[23]**D. G. Wilson, A. D. Solomon and V. Alexiades,*A shortcoming of the explicit solution for the binary alloy solidification problem*, Letters in Heat and Mass Transfer,**9**, 421-428 (1982)**[24]**D. G. Wilson, A. D. Solomon, and V. Alexiades,*A model of binary alloy solidification*, Internat. J. Numer. Methods Engrg.**20**(1984), no. 6, 1067–1084. MR**748963**, https://doi.org/10.1002/nme.1620200609**[25]**David George Wilson, Alan D. Solomon, and Paul T. Boggs (eds.),*Moving boundary problems*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**0466887****[26]**M. Woods,*Thermodynamics of fluid systems*, Oxford Univ. Press, 1975**[27]**T. W. Clyne,*Numerical modeling of directional solidification of metallic alloys*, Metal science**16**, 441-450 (1982)**[28]**Stephan Luckhaus and Augusto Visintin,*Phase transition in multicomponent systems*, Manuscripta Math.**43**(1983), no. 2-3, 261–288. MR**707047**, https://doi.org/10.1007/BF01165833

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
80A20

Retrieve articles in all journals with MSC: 80A20

Additional Information

DOI:
https://doi.org/10.1090/qam/793522

Article copyright:
© Copyright 1985
American Mathematical Society