Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Nonoscillation in a delay-logistic equation


Author: K. Gopalsamy
Journal: Quart. Appl. Math. 43 (1985), 189-197
MSC: Primary 34K15; Secondary 92A15
DOI: https://doi.org/10.1090/qam/793526
MathSciNet review: 793526
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. E. Hutchinson. Circular casual systems in ecology, Ann. N. Y. Acad. Sci. 50 (1948), 221-246
  • [2] G. S. Jones. On the nonlinear differential-difference equation $ f'\left( x \right) = - \alpha f\left( {x - 1} \right)\left[ {1 + f\left( x \right)} \right]$, J. Math. Anal. Appl. 4 (1962), 440-469 MR 0151690
  • [3] S. Kakutani and L. Markus. On the nonlinear difference-differential equation $ y'\left( t \right) = \left[ {A - By\left( {t - \tau } \right)} \right]y\left( t \right)$, Contributions to the Theory of Nonlinear Oscillations. Vol. IV, Princeton University Press, Princeton, N.J. (1958), 1-18 MR 0101953
  • [4] E. M. Wright. A nonlinear difference-differential equation, J. Reine. Angew. Math. 194 (1955), 66-87 MR 0072363

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34K15, 92A15

Retrieve articles in all journals with MSC: 34K15, 92A15


Additional Information

DOI: https://doi.org/10.1090/qam/793526
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society