Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Electrohydrodynamic solitons in Kelvin-Helmholtz flow: the case of a normal field in the absence of surface charges


Author: Elsayed Elshehawey
Journal: Quart. Appl. Math. 43 (1986), 481-499
MSC: Primary 76X05
DOI: https://doi.org/10.1090/qam/846159
MathSciNet review: 846159
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Nonlinear electrohydrodynamic Kelvin--Helmholtz instability conditions are investigated. A charge-free surface separating two semi-infinite dielectric streaming fluids influenced by a normal electric field is subjected to nonlinear deformations. The method of multiple-scale perturbations is used in order to obtain two nonlinear Schrödinger (NLS) equations describing the behavior of the disturbed system. The stability and instability conditions of the perturbed system are discussed analytically. One of the two NLS equations is used to obtain the electrohydrodynamic (EHD) nonlinear cutoff wave number separating stable and unstable disturbances while the other equation is used to describe analytically the necessary condition for stability and instability for the system. For unstable cases, the solution starting with a solitary wave degenerates into a finite number of EHD solitons.


References [Enhancements On Off] (What's this?)

  • [1] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, The International Series of Monographs on Physics, Clarendon Press, Oxford, 1961. MR 0128226
  • [2] I-Dee Chang and Paul E. Russell, Stability of a liquid layer adjacent to a high-speed gas stream, Phys. Fluids 8 (1965), 1018–1026. MR 0187527, https://doi.org/10.1063/1.1761350
  • [3] A. Davey, J. Fluid Mech. 53, 769 (1972)
  • [4] A. Davey and K. Stewartson, On three-dimensional packets of surface waves, Proc. Roy. Soc. London Ser. A 338 (1974), 101–110. MR 0349126, https://doi.org/10.1098/rspa.1974.0076
  • [5] P. G. Drazin, J. Fluid Mech. 42, 321 (1970)
  • [6] E. F. El Shehawey and A. A. Mohamed, Nonlinear Kelvin--Helmholtz instability effect of a tangential electric field, to appear
  • [7] R. L. Gater and M. R. L'Ecuyer, A fundamental investigation of the phenomena that characterize liquid film cooling, Purdue University Rep. No. Tm. 69-1 (1969)
  • [8] H. Gold, J. H. Otis and R. E. Schlier, Surface liquid film characteristics: an experimental study, A.I.A.A. Paper No. 71-623 (1971)
  • [9] H. Hasimoto and H. Ono, J. Phys. Soc. Japan 33, 805 (1972)
  • [10] R. Kant and S. K. Malik, Astrophys. space Sc. 86, 345 (1982)
  • [11] V. I. Karpman, Nonlinear waves in dispersive media, Pergamon Press (1975)
  • [12] The correspondence between Sir George Gabriel Stokes and Sir William Thomson, Baron Kelvin of Largs, Cambridge University Press, Cambridge, 1990. Vol. I, 1846–1869. Vol. II, 1870–1901; Edited with an introduction by David B. Wilson. MR 1254662
  • [13] M. J. Lighthill, Group velocity, J. Inst. Math. Appl. 1 (1965), 1–28. MR 0184458
  • [14] S. A. Maslowe and R. E. Kelley, Int. J. Nonlinear Mech. 5, 427 (1970)
  • [15] J. R. Melcher, Field coupled surface waves, MIT Press, (1963)
  • [16] John W. Miles, An envelope soliton problem, SIAM J. Appl. Math. 41 (1981), no. 2, 227–230. MR 628947, https://doi.org/10.1137/0141018
  • [17] Abou El Magd A. Mohamed and Elsayed F. El Shehawey, Nonlinear electrohydrodynamic Rayleigh-Taylor instability. I. A perpendicular field in the absence of surface charges, J. Fluid Mech. 129 (1983), 473–494. MR 707996, https://doi.org/10.1017/S0022112083000877
    Abou El Magd A. Mohamed and Elsayed F. El Shehawey, Nonlinear electrohydrodynamic Rayleigh-Taylor instability. II. A perpendicular field producing surface charge, Phys. Fluids 26 (1983), no. 7, 1724–1730. MR 710076, https://doi.org/10.1063/1.864371
  • [18] Abou El Magd A. Mohamed and Elsayed F. El Shehawey, Nonlinear electrohydrodynamic Rayleigh-Taylor instability. I. A perpendicular field in the absence of surface charges, J. Fluid Mech. 129 (1983), 473–494. MR 707996, https://doi.org/10.1017/S0022112083000877
    Abou El Magd A. Mohamed and Elsayed F. El Shehawey, Nonlinear electrohydrodynamic Rayleigh-Taylor instability. II. A perpendicular field producing surface charge, Phys. Fluids 26 (1983), no. 7, 1724–1730. MR 710076, https://doi.org/10.1063/1.864371
  • [19] A. A. Mohamed and E. F. El Shehawey, Nonlinear electrohydrodynamic Rayleigh--Taylor instability. III Effect of a tangential field, AJSE 9, no. 4, 345-360 (1984)
  • [20] A. A. Mohamed and E. F. El Shehawey, Nonlinear Kelvin--Helmholtz instability, effect of a normal electric field, to appear (in Phys. Fluids)
  • [21] A. H. Nayfeh and W. S. Saric, Nonlinear Kelvin--Helmholtz instability, J. Fluid Mech. 46, 209 (1971)
  • [22] A. H. Nayfeh and W. S. Saric, J. Fluid Mech. 55, 311 (1972)
  • [23] A. H. Nayfeh and W. S. Saric, J. Fluid Mech. 58, 39 (1973a)
  • [24] Ali Hasan Nayfeh, Perturbation methods, John Wiley & Sons, New York-London-Sydney, 1973. Pure and Applied Mathematics. MR 0404788
  • [25] A. H. Nayfeh, Trans. A.S.M.E.E. J. Appl. Mech. 43, 584 (1976)
  • [26] W. S. Saric and B. W. Marshall, An experimental investigation of the stability of a thin liquid layer adjacent to a supersonic stream, A.I.A.A.J. 9, 1546 (1971)
  • [27] Alwyn C. Scott, F. Y. F. Chu, and David W. McLaughlin, The soliton: a new concept in applied science, Proc. IEEE 61 (1973), 1443–1483. MR 0358045
  • [28] C. V. Smith and J. R. Melcher, Phys. Fluids 10, 2315 (1967)
  • [29] W. Strauss, Mathematical aspects of classical nonlinear field equations, Nonlinear problems in theoretical physics (Proc. IX G.I.F.T. Internat. Sem. Theoret. Phys., Univ. Zaragoza, Jaca, 1978) Lecture Notes in Phys., vol. 98, Springer, Berlin-New York, 1979, pp. 123–149. MR 542271
  • [30] G. I. Taylor, Proc. R. Soc. London A313, 453 (1969)
  • [31] S. A. Thorpe, J. Fluid Mech. 32, 693 (1968)
  • [32] S. A. Thorpe, J. Fluid Mech. 39, 25 (1969)
  • [33] S. A. Weissman, Phil. Trans. 290A, 639 (1979)
  • [34] G. B. Whitham, Linear and nonlinear waves, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0483954
  • [35] H. H. Woodson and J. R. Melcher, Electromechanical dynamics, Part II, John Wiley (1968)
  • [36] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76X05

Retrieve articles in all journals with MSC: 76X05


Additional Information

DOI: https://doi.org/10.1090/qam/846159
Article copyright: © Copyright 1986 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website