Electrohydrodynamic solitons in Kelvin-Helmholtz flow: the case of a normal field in the absence of surface charges

Author:
Elsayed Elshehawey

Journal:
Quart. Appl. Math. **43** (1986), 481-499

MSC:
Primary 76X05

DOI:
https://doi.org/10.1090/qam/846159

MathSciNet review:
846159

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nonlinear electrohydrodynamic Kelvin--Helmholtz instability conditions are investigated. A charge-free surface separating two semi-infinite dielectric streaming fluids influenced by a normal electric field is subjected to nonlinear deformations. The method of multiple-scale perturbations is used in order to obtain two nonlinear Schrödinger (NLS) equations describing the behavior of the disturbed system. The stability and instability conditions of the perturbed system are discussed analytically. One of the two NLS equations is used to obtain the electrohydrodynamic (EHD) nonlinear cutoff wave number separating stable and unstable disturbances while the other equation is used to describe analytically the necessary condition for stability and instability for the system. For unstable cases, the solution starting with a solitary wave degenerates into a finite number of EHD solitons.

**[1]**S. Chandrasekhar,*Hydrodynamic and hydromagnetic stability*, The International Series of Monographs on Physics, Clarendon Press, Oxford, 1961. MR**0128226****[2]**I-Dee Chang and Paul E. Russell,*Stability of a liquid layer adjacent to a high-speed gas stream*, Phys. Fluids**8**(1965), 1018–1026. MR**0187527**, https://doi.org/10.1063/1.1761350**[3]**A. Davey, J. Fluid Mech.**53**, 769 (1972)**[4]**A. Davey and K. Stewartson,*On three-dimensional packets of surface waves*, Proc. Roy. Soc. London Ser. A**338**(1974), 101–110. MR**0349126**, https://doi.org/10.1098/rspa.1974.0076**[5]**P. G. Drazin, J. Fluid Mech.**42**, 321 (1970)**[6]**E. F. El Shehawey and A. A. Mohamed,*Nonlinear Kelvin--Helmholtz instability effect of a tangential electric field*, to appear**[7]**R. L. Gater and M. R. L'Ecuyer,*A fundamental investigation of the phenomena that characterize liquid film cooling*, Purdue University Rep. No. Tm. 69-1 (1969)**[8]**H. Gold, J. H. Otis and R. E. Schlier,*Surface liquid film characteristics: an experimental study*, A.I.A.A. Paper No. 71-623 (1971)**[9]**H. Hasimoto and H. Ono, J. Phys. Soc. Japan**33**, 805 (1972)**[10]**R. Kant and S. K. Malik, Astrophys. space Sc.**86**, 345 (1982)**[11]**V. I. Karpman,*Nonlinear waves in dispersive media*, Pergamon Press (1975)**[12]***The correspondence between Sir George Gabriel Stokes and Sir William Thomson, Baron Kelvin of Largs*, Cambridge University Press, Cambridge, 1990. Vol. I, 1846–1869. Vol. II, 1870–1901; Edited with an introduction by David B. Wilson. MR**1254662****[13]**M. J. Lighthill,*Group velocity*, J. Inst. Math. Appl.**1**(1965), 1–28. MR**0184458****[14]**S. A. Maslowe and R. E. Kelley, Int. J. Nonlinear Mech.**5**, 427 (1970)**[15]**J. R. Melcher,*Field coupled surface waves*, MIT Press, (1963)**[16]**John W. Miles,*An envelope soliton problem*, SIAM J. Appl. Math.**41**(1981), no. 2, 227–230. MR**628947**, https://doi.org/10.1137/0141018**[17]**Abou El Magd A. Mohamed and Elsayed F. El Shehawey,*Nonlinear electrohydrodynamic Rayleigh-Taylor instability. I. A perpendicular field in the absence of surface charges*, J. Fluid Mech.**129**(1983), 473–494. MR**707996**, https://doi.org/10.1017/S0022112083000877**[18]**Abou El Magd A. Mohamed and Elsayed F. El Shehawey,*Nonlinear electrohydrodynamic Rayleigh-Taylor instability. II. A perpendicular field producing surface charge*, Phys. Fluids**26**(1983), no. 7, 1724–1730. MR**710076**, https://doi.org/10.1063/1.864371**[19]**A. A. Mohamed and E. F. El Shehawey,*Nonlinear electrohydrodynamic Rayleigh--Taylor instability*. III*Effect of a tangential field*, AJSE**9**, no. 4, 345-360 (1984)**[20]**A. A. Mohamed and E. F. El Shehawey,*Nonlinear Kelvin--Helmholtz instability, effect of a normal electric field*, to appear (in Phys. Fluids)**[21]**A. H. Nayfeh and W. S. Saric,*Nonlinear Kelvin--Helmholtz instability*, J. Fluid Mech.**46**, 209 (1971)**[22]**A. H. Nayfeh and W. S. Saric, J. Fluid Mech.**55**, 311 (1972)**[23]**A. H. Nayfeh and W. S. Saric, J. Fluid Mech.**58**, 39 (1973a)**[24]**Ali Hasan Nayfeh,*Perturbation methods*, John Wiley & Sons, New York-London-Sydney, 1973. Pure and Applied Mathematics. MR**0404788****[25]**A. H. Nayfeh, Trans. A.S.M.E.E. J. Appl. Mech.**43**, 584 (1976)**[26]**W. S. Saric and B. W. Marshall,*An experimental investigation of the stability of a thin liquid layer adjacent to a supersonic stream*, A.I.A.A.J.**9**, 1546 (1971)**[27]**Alwyn C. Scott, F. Y. F. Chu, and David W. McLaughlin,*The soliton: a new concept in applied science*, Proc. IEEE**61**(1973), 1443–1483. MR**0358045****[28]**C. V. Smith and J. R. Melcher, Phys. Fluids**10**, 2315 (1967)**[29]**W. Strauss,*Mathematical aspects of classical nonlinear field equations*, Nonlinear problems in theoretical physics (Proc. IX G.I.F.T. Internat. Sem. Theoret. Phys., Univ. Zaragoza, Jaca, 1978) Lecture Notes in Phys., vol. 98, Springer, Berlin-New York, 1979, pp. 123–149. MR**542271****[30]**G. I. Taylor, Proc. R. Soc. London**A313**, 453 (1969)**[31]**S. A. Thorpe, J. Fluid Mech.**32**, 693 (1968)**[32]**S. A. Thorpe, J. Fluid Mech.**39**, 25 (1969)**[33]**S. A. Weissman, Phil. Trans.**290A**, 639 (1979)**[34]**G. B. Whitham,*Linear and nonlinear waves*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR**0483954****[35]**H. H. Woodson and J. R. Melcher,*Electromechanical dynamics*, Part II, John Wiley (1968)**[36]**V. E. Zakharov and A. B. Shabat,*Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media*, Ž. Èksper. Teoret. Fiz.**61**(1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP**34**(1972), no. 1, 62–69. MR**0406174**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76X05

Retrieve articles in all journals with MSC: 76X05

Additional Information

DOI:
https://doi.org/10.1090/qam/846159

Article copyright:
© Copyright 1986
American Mathematical Society