Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Existence of solutions in a population dynamics problem


Author: Gastón E. Hernández
Journal: Quart. Appl. Math. 43 (1986), 509-521
MSC: Primary 92A15; Secondary 35K57
DOI: https://doi.org/10.1090/qam/846161
MathSciNet review: 846161
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show the existence of a solution for the Gurtin--MacCamy model in population dynamics with age dependence and diffusion. We also discuss the behavior of this solution.


References [Enhancements On Off] (What's this?)

  • [1] M. E. Gurtin, Some questions and open problems in continuum mechanics and population dynamics, J. Diff. Eq. 48, 293-312 (1983) MR 696872
  • [2] M. E. Gurtin, A system of equations for age dependent population diffusion, J. Theor. Biol. 40, 389-392 (1973)
  • [3] M. E. Gurtin and R. C. MacCamy, Nonlinear age dependent population dynamics, Arch. Rat. Mech. Anal. 54, 281-300 (1974) MR 0354068
  • [4] M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Bioscience 33, 35-49 (1977) MR 0682594
  • [5] M. E. Gurtin and R. C. MacCamy, Population dynamics with age dependence, Nonlinear Analysis and Mech. Heriot-Watt Symposium, Vol. III, Pitman, 1979 MR 539689
  • [6] M. E. Gurtin and R. C. MacCamy, Some simple models for nonlinear age-dependent population dynamics, Math. Biosciences 43, 199-211 (1979) MR 527566
  • [7] M. E. Gurtin and R. C. MacCamy, Diffusion models for age-structured population, Math. Biosciences 54, 49-59 (1981) MR 630655
  • [8] R. C. MacCamy. A population model with nonlinear diffusion, J. Diff. Equations 39, 52-72 (1981) MR 602431
  • [9] G. E. Hernandez, Existence of solutions of population dynamics problems with diffusion, Thesis, University of Minnesota, 1983 MR 2633078
  • [10] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, 1964 MR 0181836
  • [11] O. A. Ladyženskaja. V. A. Solonikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., 1968 MR 0241822
  • [12] D. G. Aronson, Regularity properties of flows through porous media: a counterexample, SIAM J. Appl. Math. 19(1970) MR 0265774
  • [13] D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations. Arch. Rat. Mech. Anal. 25, 81-122 (1967) MR 0244638

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 92A15, 35K57

Retrieve articles in all journals with MSC: 92A15, 35K57


Additional Information

DOI: https://doi.org/10.1090/qam/846161
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society