Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the small oscillations of the periodic Rayleigh equation


Author: Hal L. Smith
Journal: Quart. Appl. Math. 44 (1986), 223-247
MSC: Primary 34C15; Secondary 58F14, 58F15, 92A15
DOI: https://doi.org/10.1090/qam/856177
MathSciNet review: 856177
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnold, Loss of stability of self-oscillations close to resonances and versal deformations of equivariant vector fields, Funct. Anal. Appl. 11, 1-10 (1977) MR 0442987
  • [2] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Springer-Verlag, 1983 MR 695786
  • [3] F. S. Berezovskaia and A. I. Khibnik, On the bifurcation of separatrices in the problem of stability loss of auto-oscillations near 1:4 resonance, P.M M. 44, 663-667 (1981) MR 654283
  • [4] J. Carr, Applications of center manifold theory, Springer-Verlag, 1981 MR 635782
  • [5] S. N. Chow, J. K. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Differential Equations 37, 351-373 (1980) MR 589997
  • [6] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, New York, 1983 MR 709768
  • [7] J. K. Hale, Ordinary differential equations, Wiley-Interscience, New York, 1969 MR 0419901
  • [8] M. R. Herman, Mesure de Lebesgue et nombre de rotation, in Geometry and Topology, J. Palis and M. de Carmo (eds.), Lect. Notes in Math., Vol. 597, Springer-Verlag, 271-293 (1977) MR 0458480
  • [9] P. J. Holmes, Averaging and chaotic motions in forced oscillations, Siam J. Appl. Math. 38, 65-80 (1980) MR 559081
  • [10] E. I. Horozov, Versal deformations of equivariant vector fields for the cases of symmetries of order 2 and 3, Trudy Sem. I. G. Petrovskoyo 5, 163-192 (1979) MR 549627
  • [11] G. Iooss, Bifurcation of maps and applications, Math. Studies, Vol. 36, North Holland, Amsterdam MR 531030
  • [12] W. Magnus and S. Winkler, Hill's equation, Interscience, New York, 1966 MR 0197830
  • [13] V. K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc. 12, 1-57 (1963) MR 0156048
  • [14] A. I. Neishtadt, Bifurcations of the phase pattern of an equation system arising in the problem of stability loss of self-oscillations close to 1:4 resonance, P.M.M. 42, 830-840 (1978) MR 620880
  • [15] B. Simon, On the genericity of nonvanishing instability intervals, Ann. Inst. H. Poincaré, A 24, 91 (1976) MR 0473321
  • [16] H. L. Smith, Dynamic bifurcation in a perturbed Hill's equation, preprint
  • [17] H. L. Smith, Normal forms for periodic systems, preprint MR 826654
  • [18] J. J. Stoker, Nonlinear vibrations, Wiley, New York, 1950
  • [19] F. Takens, Normal forms for certain singularities of vector fields, Ann. Inst. Fourier 23, 163-195 (1973) MR 0365620

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34C15, 58F14, 58F15, 92A15

Retrieve articles in all journals with MSC: 34C15, 58F14, 58F15, 92A15


Additional Information

DOI: https://doi.org/10.1090/qam/856177
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society