Finite element approximation of a reaction-diffusion equation. I. Application of topological techniques to the analysis of asymptotic behavior of the semidiscrete approximations

Author:
Sat Nam S. Khalsa

Journal:
Quart. Appl. Math. **44** (1986), 375-386

MSC:
Primary 65M60; Secondary 35K57, 65N30

DOI:
https://doi.org/10.1090/qam/856193

MathSciNet review:
856193

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The initial-boundary value problem for a reaction-diffusion equation

**[1]**J. H. Bramble and J. E. Osborn,*Rates of convergence estimates for nonselfadjoint eigenvalue approximations*, Math. Comp.**27**, 525-549 (1973) MR**0366029****[2]**F. Brezzi, J. Rappaz, and P. A. Raviart,*Finite dimensional approximation of nonlinear problems, Part 1: Branches of nonsingular solutions*, Numer. Math.**36**, 1-25 (1980) MR**595803****[3]**P. G. Ciarlet,*The finite element method for elliptic problems*, North-Holland: Amsterdam (1978) MR**0520174****[4]**C. Conley and J. Smoller,*Remarks on the stability of steady state solutions of reaction-diffusion equations*, in*Bifurcation phenomena in mathematical physics and related phenomena*, C. Bardos and D. Bessis, eds., Reidel: Dordrecht, 47-56 (1980) MR**580289****[5]**W. A. Coppel,*Stability and asymptotic behavior of differential equations*, D. C. Heath, Boston (1965) MR**0190463****[6]**P. Fife,*Mathematical aspects of reacting and diffusing systems*, Lecture notes in Biomathematics**28**, Springer-Verlag, Berlin (1979) MR**527914****[7]**L. Galeone,*The use of positive matrices for the analysis of the large time behavior of the numerical solution of reaction-diffusion systems*, Math. Comp.**41**, no. 164, 461-472 (1983) MR**717696****[8]**Guo Ben Yu and A. R. Mitchell,*Analysis of a non-linear difference scheme in reaction-diffusion*, University of Dundee Report NA/74 (1984)**[9]**M. W. Hirsch and S. Smale,*Differential equations, Dynamical systems and linear algebra*, Academic Press: New York (1974) MR**0486784****[10]**D. Hoff,*Approximation and decay of solutions of systems of nonlinear diffusion equations*, Rocky Mountain J. Math.**7**, 547-556 (1977) MR**0492770****[11]**D. Hoff,*Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations*, SIAM J. Numer. Anal.**15**, 1161-1177 (1978) MR**512689****[12]**K. Ishihara,*On numerical asymptotic behavior of finite element solutions for parabolic equations*, Numer. Math.**44**, 285-300 (1984) MR**753960****[13]**S. N. S. Khalsa,*Application of topological techniques to the analysis of asymptotic behavior of numerical solutions of a reaction-diffusion equation*, SIAM J. Math. Anal. (to appear) MR**871830****[14]**V. S. Manaranjan, A. R. Mitchell, and B. D. Sleeman,*Bifurcation studies in reaction-diffusion*, J. Comp. and Appl. Math.**11**, 27-37 (1984) MR**753609****[15]**J. C. Paumier,*Une méthode numérique pour le calcul des points de retourment, Application à un problème aux limites non-lineaire, II*, Numer. Math.**37**, 445-452 (1981)**[16]**J. M. Sanz-Serna and L. Abia,*Interpolation of the coefficients in nonlinear elliptic Galerkin procedures*, SIAM J. Numer. Anal.**21**, No. 1, 77-83 (1984) MR**731213****[17]**J. Smoller,*Shock waves and reaction-diffusion equations*, Springer-Verlag, New York (1983) MR**688146****[18]**J. K. Hale, X. B. Lin, and G. Raugel,*Upper semicontinuity of attractors for approximations of semigroups and partial differential equations*, LCDS Report #85-29, Brown University, October 1985

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
65M60,
35K57,
65N30

Retrieve articles in all journals with MSC: 65M60, 35K57, 65N30

Additional Information

DOI:
https://doi.org/10.1090/qam/856193

Article copyright:
© Copyright 1986
American Mathematical Society