Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



The derivative of a tensor-valued function of a tensor

Authors: Donald E. Carlson and Anne Hoger
Journal: Quart. Appl. Math. 44 (1986), 409-423
MSC: Primary 53A45
DOI: https://doi.org/10.1090/qam/860894
MathSciNet review: 860894
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. E. Gurtin, An introduction to continuum mechanics, Academic Press, New York, 1981 MR 636255
  • [2] Z.-h. Guo, Rates of stretch tensors, J. Elasticity 14, 263-267 (1984) MR 760033
  • [3] M. E. Gurtin and K. Spear, On the relationship between the logarithmic strain rate and the stretching tensor, Internat. J. Solids Struct. 19, 437-444 (1983) MR 702572
  • [4] A. Hoger and D. E. Carlson, On the derivative of the square root of a tensor and Guo's rate theorems, J. Elasticity 14, 329-336 (1984) MR 760036
  • [5] R. F. Rinehart, The equivalence of definitions of a matric function. Amer. Math. Monthly 62, 395-414 (1955) MR 0069908
  • [6] K. Hoffman and R. Kunze, Linear algebra, Prentice-Hall, Englewood Cliffs, 1961 MR 0125849
  • [7] P. R. Halmos, Finite-dimensional vector spaces, 2nd Ed., D. Van Nostrand, Princeton, 1958 MR 0089819
  • [8] J. M. Ball, Differentiability properties of symmetric and isotropic functions, Duke Math. J. 51, 699-728 (1984) MR 757959
  • [9] A. Hoger, The time derivative of logarithmic strain, Internat. J. Solids Struct. (to appear)
  • [10] T. Kato, Perturbation theory for linear operators, 2nd Ed., Springer, Berlin-Heidelberg-New York, 1976 MR 0407617
  • [11] F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach, New York, 1969 MR 0240668
  • [12] R. S. Rivlin, Further remarks on the stress-deformation relations for isotropic materials, J. Rat. Mech. Anal. 4, 681-702 (1955) MR 0071980
  • [13] C. Truesdell and W. Noll, The non-linear field theories of mechanics, Handbuch der Physik III/3, Springer, Berlin-Heidelberg-New York, 1965 MR 0193816
  • [14] D. E. Carlson and A. Hoger, On the derivatives of the principal invariants of a second-order tensor, J. Elasticity (to appear) MR 849674

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 53A45

Retrieve articles in all journals with MSC: 53A45

Additional Information

DOI: https://doi.org/10.1090/qam/860894
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society