Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A uniqueness theorem for thermoelastic shells with generalized boundary conditions


Author: M. B. Rubin
Journal: Quart. Appl. Math. 44 (1986), 431-440
MSC: Primary 73U05; Secondary 73L99
DOI: https://doi.org/10.1090/qam/860896
MathSciNet review: 860896
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The uniqueness of the solution of initial, mixed boundary value problems for linear thermoelastic shells is reconsidered within the context of recent developments in the thermomechanical theory of a Cosserat surface [4]. Fairly general boundary conditions are considered which allow mechanical contact with linear elastic media and thermal radiation on the boundary curve of the Cosserat surface and on the major surfaces of the shell.


References [Enhancements On Off] (What's this?)

  • [1] P. M. Naghdi, The theory of shells and plates, in S. Flügge's Handbuch der Physik, vol. VIa/2 (C. Truesdell, ed.), pp. 425-640, Springer-Verlag, Berlin (1972)
  • [2] A. E. Green and P. M. Naghdi, On thermodynamics and the nature of the second law, Proc. Roy. Soc. London Ser. A 357, 253-270 (1977) MR 0462241
  • [3] A. E. Green and P. M. Naghdi, The second law of thermodynamics and cyclic processes, J. Appl. Mech. 45, 487-492 (1978)
  • [4] A. E. Green and P. M. Naghdi, On thermal effects in the theory of shells, Proc. Roy. Soc. London Ser. A 365, 161-190 (1979) MR 527033
  • [5] P. M. Naghdi and J. A. Trapp, A uniqueness theorem in the theory of Cosserat surfaces, J. Elast. 2, 9-20 (1972) MR 0475126
  • [6] A. E. Green and P. M. Naghdi, On uniqueness in the linear theory of elastic shells and plates, J. Méc. 10, no. 2, 251-261 (1971) MR 0278593
  • [7] P. M. Naghdi, Finite deformation of elastic rods and shells, Proc. IUTAM Symp. Finite Elasticity, Bethlehem, Pa., 1980 (D. E. Carlson and R. T. Shield, eds.), pp. 47-103, Martinus Nijhoff, The Hague (1982)
  • [8] B. A. Boley and J. H. Weiner, Theory of thermal stresses, Wiley, New York (1960) MR 0112414
  • [9] A. E. Green and P. M. Naghdi, A theory of laminated composite plates, IMA J. Appl. Math. 29, 1-23 (1982)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73U05, 73L99

Retrieve articles in all journals with MSC: 73U05, 73L99


Additional Information

DOI: https://doi.org/10.1090/qam/860896
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society