Parameter identifiability under approximation

Authors:
K. Kunisch and L. W. White

Journal:
Quart. Appl. Math. **44** (1986), 475-486

MSC:
Primary 49D15; Secondary 93B30, 93C05

DOI:
https://doi.org/10.1090/qam/860900

MathSciNet review:
860900

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of injectivity of the parameter-to-state map is discussed for Galerkin approximations of a linear parabolic equation. A necessary and sufficient condition is derived and illustrated by means of simple examples. Finally, output least squares identifiability of the Galerkin approximations is discussed.

**[1]**A. Bamberger, G. Chavent, and P. Lailly,*About the stability of the inverse problem in a*1-*D wave equation--application to the interpretation of seismic profiles*, J. Appl. Math. Optim.**5**, 1-47 (1979) MR**526426****[2]**H. T. Banks and P. L. Daniel,*Estimation of variable coefficients in parabolic systems*, LCDS Report 82-22, Brown University, Sept. 1982; IEEE Trans. Autom. Control.**30**, 386-398 (1985)**[3]**H. T. Banks and K. Kunisch,*An approximation theory for nonlinear partial differential equations with applications to identification and control*, SIAM J. Control Optimization**20**, 815-849 (1982) MR**675572****[4]**G. Chavent,*Local stability of the output least square parameter estimation technique*, INRIA Report No. 136, Paris (1982); Mat. Apl. Comput.**2**, 3-22 (1983) MR**699367****[5]**I. M. Gelfand and B. M. Levitan,*On the determination of a differential equation from its spectral function*, Am. Math. Soc. Transl.**1**, 253-304 (1955) MR**0073805****[6]**T. Kato,*Perturbation theory for linear operators*, Springer, New York, 1966 MR**0203473****[7]**S. Kitamura and S. Nakagiri,*Identifiability of spatially varying and constant parameters in distributed systems of parabolic type*, SIAM J. Control Optimization**15**, 785-802 (1979) MR**0459856****[8]**K. Kunisch and L. W. White,*The parameter estimation problem for parabolic equations and discontinuous observation operators*, SIAM J. Control Optimization**23**, 900-927 (1985) MR**809541****[9]**A. Pierce,*Unique identification of eigenvalues and coefficients in a parabolic problem*, SIAM J. Control Optimization**17**, 494-499 (1979) MR**534419****[10]**T. Suzuki,*Uniqueness and nonuniqueness in an inverse problem for the parabolic equation*, J. Differ. Eq.**47**, 296-316 (1983) MR**688107****[11]**L. W. White,*Identification of a friction parameter in a first order linear hyperbolic equation*, Proc. 22nd IEEE Conf. Decision and Control, San Antonio, 56-59 (1983)**[12]**A. E. Taylor and D. C. Lay,*Introduction to functional analysis*, Wiley, New York, 1980 MR**564653**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
49D15,
93B30,
93C05

Retrieve articles in all journals with MSC: 49D15, 93B30, 93C05

Additional Information

DOI:
https://doi.org/10.1090/qam/860900

Article copyright:
© Copyright 1986
American Mathematical Society