Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



On the solvability of a two-dimensional water-wave radiation problem

Author: G. A. Athanassoulis
Journal: Quart. Appl. Math. 44 (1987), 601-620
MSC: Primary 76B15; Secondary 35R35
DOI: https://doi.org/10.1090/qam/872813
MathSciNet review: 872813
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of a unique weak solution for the two-dimensional water-wave radiation problem arising when a floating rigid body oscillates on the free surface is established for all but a discrete set of oscillation frequencies. The body boundary is taken to be of $ C_ * ^{1,\alpha }$ class (see Sec. 2) and the body boundary condition is satisfied in the $ {L^2}$-sense. The proof relies on an expansion theorem (Athanassoulis [1]) and on the property of the associated water-wave multipoles being a Riesz basis of $ {L^2}\left( { - \pi ,0} \right)$, a fact which is established in the present paper. Under stronger geometrical restrictions on the body boundary it is proved, using a method due to Ursell [10], that the weak solution is actually a classical one; that is, the velocity field is continuous up to ana including the body boundary.

References [Enhancements On Off] (What's this?)

  • [1] G. A. Athanassoulis, An expansion theorem for water-wave potentials, J. Engrg. Math. 18 (1984), no. 3, 181–194. MR 757802, https://doi.org/10.1007/BF00039187
  • [2] Fritz John, On the motion of floating bodies. I, Comm. Pure Appl. Math. 2 (1949), 13–57. MR 0032328, https://doi.org/10.1002/cpa.3160020102
  • [3] J. Thomas Beale, Eigenfunction expansions for objects floating in an open sea, Comm. Pure Appl. Math. 30 (1977), no. 3, 283–313. MR 0670432, https://doi.org/10.1002/cpa.3160300303
  • [4] M. Lenoir and D. Martin, An application of the principle of limiting absorption to the motions of floating bodies, J. Math. Anal. Appl. 79 (1981), no. 2, 370–383. MR 606488, https://doi.org/10.1016/0022-247X(81)90032-9
  • [5] M. Lenoir and D. Martin, Étude théorique et numérique du problème linéarisé du mouvement sur la houle tridimensionnelle, École National Supérieure de Techniques Avancées, Paris, Report No. 124 (1980)
  • [6] M. Lenoir, Méthod de couplage en hydrodynamique naval et application à la resistance de vagues bidimensionnelles, École National Supérieure de Techniques Avancées, Paris, Report No. 164, chapter III (1982)
  • [7] F. Ursell, Surface waves on deep water in the presence of a submerged circular cylinder. II, Proc. Cambridge Philos. Soc. 46 (1950), 153–158. MR 0033403
  • [8] F. Ursell, The expansion of water-wave potentials at great distances, Proc. Camb. Philos. Soc. 64, 811-826 (1968)
  • [9] F. Ursell, Short surface waves due to an oscillating immersed body, Proc. Roy. Soc. London. Ser. A. 220 (1953), 90–103. MR 0059694, https://doi.org/10.1098/rspa.1953.0174
  • [10] F. Ursell, A problem in the theory of water waves, Numerical solution of integral equations (Liverpool-Manchester Summer School, 1973) Clarendon Press, Oxford, 1974, pp. 291–299. MR 0479017
  • [11] Y. S. Yu and F. Ursell, Surface waves generated by an oscillating circular cylinder on water of finite depth: Theory and experiment, J. Fluid Mech. 11(4), 529-551 (1961)
  • [12] J. J. Stoker, Water waves: The mathematical theory with applications, Pure and Applied Mathematics, Vol. IV, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957. MR 0103672
  • [13] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
  • [14] Ivan Singer, Bases in Banach spaces. I, Springer-Verlag, New York-Berlin, 1970. Die Grundlehren der mathematischen Wissenschaften, Band 154. MR 0298399
  • [15] John Rowland Higgins, Completeness and basis properties of sets of special functions, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Cambridge Tracts in Mathematics, Vol. 72. MR 0499341
  • [16] Nina Bary, Sur les systèmes complets de fonctions orthogonales, Rec. Math. [Mat. Sbornik] N.S. 14(56) (1944), 51–108 (French, with Russian summary). MR 0012161
  • [17] Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR 0407617
  • [18] V. I. Smirnov, A course of higher mathematics. Vol. V [Integration and functional analysis], Translated by D. E. Brown; translation edited by I.N. Sneddon. ADIWES International Series in Mathematics, Pergamon Press, Oxford-New York; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1964. MR 0168707
  • [19] R. R. Goldberg, Methods of real analysis, Blaisdell, New York (1964)
  • [20] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR 0133008
  • [21] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR 0218588
  • [22] D. F. Harazov, On the spectrum of completely continuous operators depending analytically on a parameter, in topological linear spaces, Acta Sci. Math. (Szeged) 23 (1962), 38–45 (Russian). MR 0139950
  • [23] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR 0246142
  • [24] Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
  • [25] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
  • [26] F. Ursell, On the rolling motion of cylinders in the surface of a fluid, Quart. J. Mech. Appl. Math. 2 (1949), 335–353. MR 0032330, https://doi.org/10.1093/qjmam/2.3.335
  • [27] D. Euvrard, A. Jami, M. Lenoir, and D. Martin, Recent progress towards an optimal coupling between finite elements and singularity distribution procedures, Proc. 3rd Internat. Conf. Numerical Ship Hydrodynamics, Paris (1981)
  • [28] M. J. Simon and F. Ursell, Uniqueness in linearized two-dimensional water-wave problems, J. Fluid Mech. 148 (1984), 137–154. MR 778139, https://doi.org/10.1017/S0022112084002287

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76B15, 35R35

Retrieve articles in all journals with MSC: 76B15, 35R35

Additional Information

DOI: https://doi.org/10.1090/qam/872813
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society