Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Refined geometrically nonlinear theories of anisotropic laminated shells

Author: Liviu Librescu
Journal: Quart. Appl. Math. 45 (1987), 1-22
MSC: Primary 73L10
DOI: https://doi.org/10.1090/qam/885164
MathSciNet review: 885164
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. A. Ambartsumian, Theory of anisotropic shells, NASA Techn. Transl. F-118, 1964
  • [2] S. A. Ambartsumyan, \cyr Obshchaya teoriya anizotropnykh obolochek., Izdat. “Nauka”, Moscow, 1974 (Russian). MR 0416168
  • [3] Ia. M. Grigorenko, Isotropic and anisotropic multilayered shells of revolution of variable rigidity, Naukova Dumka (in Russian), Kiev, 1973
  • [4] J. R. Vinson and T. W. Chou, Composite materials and their use in structures, John Wiley & Sons, New York, Toronto, 1974
  • [5] L. Librescu, Elastostatics and kinetics of anisotropic and heterogeneous shell-type structures, Noordhoff Internat. Publishing, Leyden, 1975
  • [6] R. B. Rikards and G. A. Teters, Stability of shells made of composite materials (in Russian), Zinatne, Riga, 1974
  • [7] E. I. Grigoliuk and F. A. Kogan, Present status of the multilayered shell theory (in Russian), Prikladnaia Mechanika 8, 6, 1972
  • [8] C. W. Bert and P. H. Francis, Composite material mechanics; Structural mechanics, AIAA Journ. 12 (1974)
  • [9] C. W. Bert, Comparison of new plate theories applied to laminated composites, in Mechanics of Composite Materials, G. J. Dvorak (Ed.). ASME Winter Annual Meeting, Boston, MA, Nov. 1983, 1-9
  • [10] J. N. Reddy, Finite-element modeling of layered, anisotropic composite plates and shells: A review of recent research, Shock and Vibration Digest 13 (1981)
  • [11] A. E. Green and P. M. Naghdi, A theory of laminated composite plates, IMA J. Appl. Math. 29, 1-23 (1982)
  • [12] E. I. Grigoliuk and P. P. Chulkov, On the theory of multilayered shells, in Contributions to the Theory of Aircraft Structures, Delft Univ., 171-183, 1972
  • [13] L. Librescu, Nonlinear theory of elastic, anisotropic multilayered shells (in Russian), in Selected Topics in Applied Mechanics, Ed. L. I. Sedov, pp. 453-466, Nauka, Moskow, 1974
  • [14] L. Librescu, Improved linear theory of elastic anisotropic multilayered shells (in Russian), Mekhanika Polimerov, Part I, No. 6, 1038-1050, Dec. Nov.-Dec. 1975, and Part II, No. 1 100-109, Jan.-Feb., 1976 (English Translat. by Plenum Publ. Corp.)
  • [15] G. A. Wempner, Theory for moderately large deflections of sandwich shells with dissimilar facings, Internat. J. Solids and Structures 3, 367-392 (1967)
  • [16] Eric Reissner, Finite deflections of sandwich plates, J. Aeronaut. Sci. 15 (1948), 435–440. MR 0027215
  • [16b] I. K. Ebcioglu, Nonlinear theory of sandwich panels, in Developments in Theoretical and Applied Mechanics, Vol. 4, Ed. Daniel Frederik, Pergamon Press, Oxford and New York, 611-637, 1970
  • [17a] P. C. Yang, C. H. Norris and Y. Stavsky, Elastic-wave propagation in heterogeneous plates, Internat. J. Solids and Structures 2, 665-684 (1966)
  • [17b] J. M. Whitney and N. J. Pagano, Shear deformation in heterogeneous anistropic plates, J. Appl. Mech., 1031-1036 (1970)
  • [18] R. B. Nelson and D. R. Lorch, A refined theory for laminated orthotropic plates, J. Appl. Mech. 41, 177-183 (1974)
  • [19] K. H. Lo, R. M. Christensen, and E. M. Wu, A higher-order theory of plate deformation, Part 2, Laminated plates, ASME Journal of Applied Mechanics 44, 669-676 (1977)
  • [20] J. N. Reddy and W. C. Chao, Nonlinear oscillation of laminated anisotropic, rectangular plates, ASME Journal of Applied Mechanics 49, 396-401 (1982)
  • [21] J. A. Zukas and J. R. Vinson, Laminated transversal isotropic cylindrical shells, ASME Journal of Applied Mechanics 38, 400-407 (1971)
  • [22] J. M. Whitney and C. T. Sun, A refined theory for laminated anisotropic, cylindrical shells, ASME Journal of Applied Mechanics, 471-476 (1974)
  • [23] P. M. Naghdi, Foundations of elastic shell theories, in Progr. Solid Mechanics, Ed. I. N. Sneddon and R. Hill, 4, 1963
  • [24] E. Reissner, On a variational theory for finite elastic deformation, J. Math. Phys. 32, 129-135 (1953)
  • [25] L. M. Habip, Theory of elastic shells in the reference state, Ing. Archiv. 34, 228-237 (1965)
  • [26a] A. E. Green and J. E. Adkins, Large elastic deformations, Second edition, revised by A. E. Green, Clarendon Press, Oxford, 1970. MR 0269158
  • [26b] H. Leipholz, Theory of elasticity, Noordhoff International Publishing, Leyden, 1974. Mechanics of Elastic Stability, No. 1; Monographs and Textbooks on Mechanics of Solids and Fluids. MR 0413649
  • [27] B. Budiansky, Remarks on theories of solid and structural mechanics, in Problems of Hydrodynamics and Continuum Mechanics, SIAM, 77-83 (1969)
  • [28] P. M. Naghdi and R. P. Nordgren, On the nonlinear theory of elastic shells under the Kirchhoff hypothesis, Quart. Appl. Math. 21 (1963), 49–59. MR 0145743, https://doi.org/10.1090/S0033-569X-1963-0145743-4
  • [29] P. M. Naghdi, On the non-linear thermoelastic theory of shells, in Non-Classical Shell-Problems, North-Holland, Amsterdam, R.W.N., Warsaw, 5-26, 1964
  • [30] L. E. Malvern, Introduction to the mechanics of a continuous medium, Prentice-Hall, Englewood Cliffs, 1969
  • [31] A. E. Green and W. Zerna, Theoretical elasticity, Oxford, at the Clarendon Press, 1954. MR 0064598
  • [32] M. Brull and L. Librescu, Strain measures and compatibility equations in the linear high-order shell theories, Quart. Appl. Math. 40 (1982/83), no. 1, 15–25. MR 652046, https://doi.org/10.1090/S0033-569X-1982-0652046-4
  • [33] W. T. Koiter, A consistent first approximation in the general theory of thin elastic shells, Proc. Sympos. Thin Elastic Shells (Delft, 1959) North-Holland, Amsterdam, 1960, pp. 12–33. MR 0142241
  • [34] B. Budiansky and J. L. Sanders Jr., On the “best” first-order linear shell theory, Progress in Applied Mechanics, Macmillan, New York, 1963, pp. 129–140. MR 0158595
  • [35] F. B. Hildebrand, E. Reissner, and G. B. Thomas, Notes on the foundations of the theory of small displacements of orthotropic shells, Tech. Notes Nat. Adv. Comm. Aeronaut., 1949 (1949), no. 1833, 59. MR 0030886
  • [36] J. N. Reddy, An accurate prediction of natural frequencies of laminated plates by a high-order theory, in Advances in Aerospace Structures and Materials, (Ed. Umar Yuceoglu) 1983 Winter Annual Meeting of ASME, Boston, MA., November, 1983 (Report)
  • [37] W. L. Wainwright, On a nonlinear theory of elastic shells, Internat. J. Engrg. Sci. 1 (1963), 339–358 (English, with French, German, Italian and Russian summaries). MR 0160366, https://doi.org/10.1016/0020-7225(63)90012-0
  • [38] L. Librescu, A physically nonlinear theory of elastic shells and plates, the Love-Kirchhoff hypothesis being eliminated, Rev. Roum. Sci. Techn-Mec. Appl. 15, 1263-1284 (1970)
  • [39a] V. Biricikoglu and A. Kalnins, Large elastic deformation of shells with the inclusion of transverse normal strain, Int. J. Solids Structures 7, 431-444 (1971)
  • [39b] Y. Yokoo and H. Matsunaga, A general nonlinear theory of elastic solids, Internat. J. Solids and Structures 10, 261-272 (1974)
  • [40] L. M. Habip and I. K. Ebcioglu, On the equations of motion of shells in the reference state, Ing. Archiv. 34 (1965)
  • [41] L. Ia. Ainola, Nonlinear Timoshenko type theory of elastic shells (in Russian), Izv. Akad. Nauk. Eston. SSR, 14, 337-344 (1965)
  • [42] K. Z. Galimov, The theory of shells with transverse shear effect (in Russian), Kazan Univ., 1977
  • [43] K. Z. Galimov, The bases of the nonlinear theory of thin shells, (in Russian), Kazan Univ., 1975
  • [44] I. Oshima, Y. Seguchi and A. Shindo, On nonlinear shell theories, Bull. of the J.S.M.E. 13, 1155-1164 (1970)
  • [45] I. K. Ebcioglu, Non-linear theory of shells, Internat. J. Non-linear Mech. 6, 469-478 (1970)
  • [46] C. I. Wu and J. Vinson, Influences of large amplitudes, transverse shear deformation and rotatory inertia on lateral vibrations of transversely istropic plates, J. Appl. Mech. 36, 254-260 (1969)
  • [47] K. Summo, Nonlinear theory of thin elastic shells based on Kirchhoff hypothesis, Recent Researches of Structural Mechanics, Uno Shoten, Tokyo, 231-244, 1968
  • [48] T. Nakamura, Foundation of geometrically nonlinear theory of the continuum based on Kirchhoff-Love assumptions, Report of the Institute of Industrial Science, Univ. of Tokyo, 20, 1-49 (1971)
  • [49] R. Harnach and W. B. Kratzig, Allgemeine Theorie geometrish nichtlinearer insbesondere leighter Flachentragwerke, Mitteilung Nr. 73-6, April, Inst, für Konstruktiven Ingenieurbau, Ruhr-Univ. Bochum, 1976
  • [50] W. T. Koiter, On the nonlinear theory of thin elastic shells. I, II, III, Nederl. Akad. Wetensch. Proc. Ser. B 69 (1966), 1–17, 18–32, 33–54. MR 0192706
  • [51] J. Lyell Sanders Jr., Nonlinear theories for thin shells, Quart. Appl. Math. 21 (1963), 21–36. MR 0147023, https://doi.org/10.1090/S0033-569X-1963-0147023-4
  • [52] J. G. Wempner, Mechanics of solids with applications to thin bodies, McGraw-Hill, 1973
  • [53] R. G. Jeffers and M. A. Brull, A large deflection theory for thin elastic shells, Israel J. Tech. 13, 111-121 (1975); Proc. XVII Isr. Annu. Conf. Aviation and Astronautics, May 1975

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73L10

Retrieve articles in all journals with MSC: 73L10

Additional Information

DOI: https://doi.org/10.1090/qam/885164
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society