Refined geometrically nonlinear theories of anisotropic laminated shells

Author:
Liviu Librescu

Journal:
Quart. Appl. Math. **45** (1987), 1-22

MSC:
Primary 73L10

DOI:
https://doi.org/10.1090/qam/885164

MathSciNet review:
885164

Full-text PDF

References | Similar Articles | Additional Information

**[1]**S. A. Ambartsumian,*Theory of anisotropic shells*, NASA Techn. Transl. F-118, 1964**[2]**S. A. Ambartsumyan,*\cyr Obshchaya teoriya anizotropnykh obolochek.*, Izdat. “Nauka”, Moscow, 1974 (Russian). MR**0416168****[3]**Ia. M. Grigorenko,*Isotropic and anisotropic multilayered shells of revolution of variable rigidity*, Naukova Dumka (in Russian), Kiev, 1973**[4]**J. R. Vinson and T. W. Chou,*Composite materials and their use in structures*, John Wiley & Sons, New York, Toronto, 1974**[5]**L. Librescu,*Elastostatics and kinetics of anisotropic and heterogeneous shell-type structures*, Noordhoff Internat. Publishing, Leyden, 1975**[6]**R. B. Rikards and G. A. Teters,*Stability of shells made of composite materials*(in Russian), Zinatne, Riga, 1974**[7]**E. I. Grigoliuk and F. A. Kogan,*Present status of the multilayered shell theory*(in Russian), Prikladnaia Mechanika**8**, 6, 1972**[8]**C. W. Bert and P. H. Francis,*Composite material mechanics; Structural mechanics*, AIAA Journ.**12**(1974)**[9]**C. W. Bert,*Comparison of new plate theories applied to laminated composites*, in Mechanics of Composite Materials, G. J. Dvorak (Ed.). ASME Winter Annual Meeting, Boston, MA, Nov. 1983, 1-9**[10]**J. N. Reddy,*Finite-element modeling of layered, anisotropic composite plates and shells: A review of recent research*, Shock and Vibration Digest**13**(1981)**[11]**A. E. Green and P. M. Naghdi,*A theory of laminated composite plates*, IMA J. Appl. Math.**29**, 1-23 (1982)**[12]**E. I. Grigoliuk and P. P. Chulkov,*On the theory of multilayered shells*, in Contributions to the Theory of Aircraft Structures, Delft Univ., 171-183, 1972**[13]**L. Librescu,*Nonlinear theory of elastic, anisotropic multilayered shells*(in Russian), in Selected Topics in Applied Mechanics, Ed. L. I. Sedov, pp. 453-466, Nauka, Moskow, 1974**[14]**L. Librescu,*Improved linear theory of elastic anisotropic multilayered shells*(in Russian), Mekhanika Polimerov, Part I, No. 6, 1038-1050, Dec. Nov.-Dec. 1975, and Part II, No. 1 100-109, Jan.-Feb., 1976 (English Translat. by Plenum Publ. Corp.)**[15]**G. A. Wempner,*Theory for moderately large deflections of sandwich shells with dissimilar facings*, Internat. J. Solids and Structures**3**, 367-392 (1967)**[16]**Eric Reissner,*Finite deflections of sandwich plates*, J. Aeronaut. Sci.**15**(1948), 435–440. MR**0027215****[16b]**I. K. Ebcioglu,*Nonlinear theory of sandwich panels*, in Developments in Theoretical and Applied Mechanics, Vol. 4, Ed. Daniel Frederik, Pergamon Press, Oxford and New York, 611-637, 1970**[17a]**P. C. Yang, C. H. Norris and Y. Stavsky,*Elastic-wave propagation in heterogeneous plates*, Internat. J. Solids and Structures**2**, 665-684 (1966)**[17b]**J. M. Whitney and N. J. Pagano,*Shear deformation in heterogeneous anistropic plates*, J. Appl. Mech., 1031-1036 (1970)**[18]**R. B. Nelson and D. R. Lorch,*A refined theory for laminated orthotropic plates*, J. Appl. Mech.**41**, 177-183 (1974)**[19]**K. H. Lo, R. M. Christensen, and E. M. Wu,*A higher-order theory of plate deformation*, Part 2,*Laminated plates*, ASME Journal of Applied Mechanics**44**, 669-676 (1977)**[20]**J. N. Reddy and W. C. Chao,*Nonlinear oscillation of laminated anisotropic, rectangular plates*, ASME Journal of Applied Mechanics**49**, 396-401 (1982)**[21]**J. A. Zukas and J. R. Vinson,*Laminated transversal isotropic cylindrical shells*, ASME Journal of Applied Mechanics**38**, 400-407 (1971)**[22]**J. M. Whitney and C. T. Sun,*A refined theory for laminated anisotropic, cylindrical shells*, ASME Journal of Applied Mechanics, 471-476 (1974)**[23]**P. M. Naghdi,*Foundations of elastic shell theories*, in Progr. Solid Mechanics, Ed. I. N. Sneddon and R. Hill,**4**, 1963**[24]**E. Reissner,*On a variational theory for finite elastic deformation*, J. Math. Phys.**32**, 129-135 (1953)**[25]**L. M. Habip,*Theory of elastic shells in the reference state*, Ing. Archiv.**34**, 228-237 (1965)**[26a]**A. E. Green and J. E. Adkins,*Large elastic deformations*, Second edition, revised by A. E. Green, Clarendon Press, Oxford, 1970. MR**0269158****[26b]**H. Leipholz,*Theory of elasticity*, Noordhoff International Publishing, Leyden, 1974. Mechanics of Elastic Stability, No. 1; Monographs and Textbooks on Mechanics of Solids and Fluids. MR**0413649****[27]**B. Budiansky,*Remarks on theories of solid and structural mechanics*, in Problems of Hydrodynamics and Continuum Mechanics, SIAM, 77-83 (1969)**[28]**P. M. Naghdi and R. P. Nordgren,*On the nonlinear theory of elastic shells under the Kirchhoff hypothesis*, Quart. Appl. Math.**21**(1963), 49–59. MR**0145743**, https://doi.org/10.1090/S0033-569X-1963-0145743-4**[29]**P. M. Naghdi,*On the non-linear thermoelastic theory of shells*, in Non-Classical Shell-Problems, North-Holland, Amsterdam, R.W.N., Warsaw, 5-26, 1964**[30]**L. E. Malvern,*Introduction to the mechanics of a continuous medium*, Prentice-Hall, Englewood Cliffs, 1969**[31]**A. E. Green and W. Zerna,*Theoretical elasticity*, Oxford, at the Clarendon Press, 1954. MR**0064598****[32]**M. Brull and L. Librescu,*Strain measures and compatibility equations in the linear high-order shell theories*, Quart. Appl. Math.**40**(1982/83), no. 1, 15–25. MR**652046**, https://doi.org/10.1090/S0033-569X-1982-0652046-4**[33]**W. T. Koiter,*A consistent first approximation in the general theory of thin elastic shells*, Proc. Sympos. Thin Elastic Shells (Delft, 1959) North-Holland, Amsterdam, 1960, pp. 12–33. MR**0142241****[34]**B. Budiansky and J. L. Sanders Jr.,*On the “best” first-order linear shell theory*, Progress in Applied Mechanics, Macmillan, New York, 1963, pp. 129–140. MR**0158595****[35]**F. B. Hildebrand, E. Reissner, and G. B. Thomas,*Notes on the foundations of the theory of small displacements of orthotropic shells*, Tech. Notes Nat. Adv. Comm. Aeronaut.,**1949**(1949), no. 1833, 59. MR**0030886****[36]**J. N. Reddy,*An accurate prediction of natural frequencies of laminated plates by a high-order theory*, in Advances in Aerospace Structures and Materials, (Ed. Umar Yuceoglu) 1983 Winter Annual Meeting of ASME, Boston, MA., November, 1983 (Report)**[37]**W. L. Wainwright,*On a nonlinear theory of elastic shells*, Internat. J. Engrg. Sci.**1**(1963), 339–358 (English, with French, German, Italian and Russian summaries). MR**0160366**, https://doi.org/10.1016/0020-7225(63)90012-0**[38]**L. Librescu,*A physically nonlinear theory of elastic shells and plates, the Love-Kirchhoff hypothesis being eliminated*, Rev. Roum. Sci. Techn-Mec. Appl.**15**, 1263-1284 (1970)**[39a]**V. Biricikoglu and A. Kalnins,*Large elastic deformation of shells with the inclusion of transverse normal strain*, Int. J. Solids Structures**7**, 431-444 (1971)**[39b]**Y. Yokoo and H. Matsunaga,*A general nonlinear theory of elastic solids*, Internat. J. Solids and Structures**10**, 261-272 (1974)**[40]**L. M. Habip and I. K. Ebcioglu,*On the equations of motion of shells in the reference state*, Ing. Archiv.**34**(1965)**[41]**L. Ia. Ainola,*Nonlinear Timoshenko type theory of elastic shells*(in Russian), Izv. Akad. Nauk. Eston. SSR,**14**, 337-344 (1965)**[42]**K. Z. Galimov,*The theory of shells with transverse shear effect*(in Russian), Kazan Univ., 1977**[43]**K. Z. Galimov,*The bases of the nonlinear theory of thin shells*, (in Russian), Kazan Univ., 1975**[44]**I. Oshima, Y. Seguchi and A. Shindo,*On nonlinear shell theories*, Bull. of the J.S.M.E.**13**, 1155-1164 (1970)**[45]**I. K. Ebcioglu,*Non-linear theory of shells*, Internat. J. Non-linear Mech.**6**, 469-478 (1970)**[46]**C. I. Wu and J. Vinson,*Influences of large amplitudes, transverse shear deformation and rotatory inertia on lateral vibrations of transversely istropic plates*, J. Appl. Mech.**36**, 254-260 (1969)**[47]**K. Summo,*Nonlinear theory of thin elastic shells based on Kirchhoff hypothesis*, Recent Researches of Structural Mechanics, Uno Shoten, Tokyo, 231-244, 1968**[48]**T. Nakamura,*Foundation of geometrically nonlinear theory of the continuum based on Kirchhoff-Love assumptions*, Report of the Institute of Industrial Science, Univ. of Tokyo,**20**, 1-49 (1971)**[49]**R. Harnach and W. B. Kratzig,*Allgemeine Theorie geometrish nichtlinearer insbesondere leighter Flachentragwerke*, Mitteilung Nr. 73-6, April, Inst, für Konstruktiven Ingenieurbau, Ruhr-Univ. Bochum, 1976**[50]**W. T. Koiter,*On the nonlinear theory of thin elastic shells. I, II, III*, Nederl. Akad. Wetensch. Proc. Ser. B**69**(1966), 1–17, 18–32, 33–54. MR**0192706****[51]**J. Lyell Sanders Jr.,*Nonlinear theories for thin shells*, Quart. Appl. Math.**21**(1963), 21–36. MR**0147023**, https://doi.org/10.1090/S0033-569X-1963-0147023-4**[52]**J. G. Wempner,*Mechanics of solids with applications to thin bodies*, McGraw-Hill, 1973**[53]**R. G. Jeffers and M. A. Brull,*A large deflection theory for thin elastic shells*, Israel J. Tech.**13**, 111-121 (1975); Proc. XVII Isr. Annu. Conf. Aviation and Astronautics, May 1975

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73L10

Retrieve articles in all journals with MSC: 73L10

Additional Information

DOI:
https://doi.org/10.1090/qam/885164

Article copyright:
© Copyright 1987
American Mathematical Society