An alternative approach to elastodynamic crack problems in an orthotropic medium

Author:
A. Piva

Journal:
Quart. Appl. Math. **45** (1987), 97-104

MSC:
Primary 73M05; Secondary 73C30

DOI:
https://doi.org/10.1090/qam/885172

MathSciNet review:
885172

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A similarity transformation is used to reduce the system of second-order equations, governing elastodynamic plane problems in an orthotropic medium, to a first-order elliptic system of the Cauchy-Riemann type. A complex variable notation is then introduced to derive in a straightforward way the solution of two noticeable elastodynamic crack problems.

**[1]**E. H. Yoffè,*The moving Griffith crack*, Philos. Mag.**42**, 739-750 (1951) MR**0043696****[2]**J. R. M. Radok,*On the solution of problems of dynamic plane elasticity*, Quart. Appl. Math.**14**, 289-298 (1956) MR**0081075****[3]**J. W. Craggs,*On the propagation of a crack in an elastic brittle material*, J. Mech. Phys. Solids**8**, 66-75 (1960) MR**0116626****[4]**F. A. McClintock and S. P. Sukhatme,*Travelling cracks in elastic materials under longitudinal shear*, J. Mech. Phys. Solids**8**, 187-193 (1960) MR**0115408****[5]**G. C. Sih,*Some elastodynamic problems of cracks*, Internat. J. Fracture**4**, 51-68 (1968)**[6]**G. C. Sih and E. P. Chen,*Moving cracks in a finite strip under tearing action*, J. Franklin Inst.**290**, 25-35 (1970)**[7]**G. C. Sih and E. P. Chen,*Crack propagation in a strip of material under plane extension*, Internat. J. Engrg. Sci.**10**, 537-551 (1972)**[8]**F. Nilsson,*Dynamic stress intensity factor for finite strip problems*, Internat. J. Fracture**8**, 403-411 (1972)**[9]**R. J. Tait and T. B. Moodie,*Complex variable methods and closed-form solutions to dynamic crack and punch problems in the classical theory of elasticity*, Internat. J. Engrg. Sci.**19**, 221-229 (1981) MR**660549****[10]**R. J. Tait and T. B. Moodie,*On a problem in the dynamic theory of cracks*, Quart. Appl. Math.**38**, 419-423 (1981) MR**636245****[11]**B. M. Singh, T. B. Moodie, and J. Haddow,*Closed-form solutions for finite length crack moving in a strip under antiplane shear stress*, Acta Mech.**38**, 99-109 (1981) MR**602014****[12]**H. G. Georgiadis and P. S. Theocaris,*On the solution of steady-state elastodynamic crack problems by using complex variable methods*, Z. Angew. Math. Phys.**36**, 146-165 (1985) MR**785929****[13]**C. Atkinson,*The propagation of fracture in aelotropic materials*, Internat. J. Fracture Mechanics**1**, 47-55 (1965) MR**0468447****[14]**M. K. Kassir and S. Tse,*Moving Griffith crack in an orthotropic material*, Internat. J. Engrg. Sci.**21**, 315-325 (1983)**[15]**H. T. Danyluk and B. M. Singh,*Closed form solutions for a finite length crack moving in an orthotropic layer of finite thickness*, Letters Appl. Engrg. Sci.**22**, 637-644 (1984)**[16]**A. Piva,*Elastodynamic crack problems in an anisotropic medium through a complex variable approach*, Quart. Appl. Math.**44**, 441-445 (1986) MR**860897****[17]**S. G. Lekhnitskii,*Theory of elasticity of an anisotropic elastic body*, Holden-Day (1963) MR**0180018****[18]**F. D. Gakhov,*Boundary value problems*, Pergamon Press (1966) MR**0198152**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73M05,
73C30

Retrieve articles in all journals with MSC: 73M05, 73C30

Additional Information

DOI:
https://doi.org/10.1090/qam/885172

Article copyright:
© Copyright 1987
American Mathematical Society