RESPONSE BOUNDS FOR HYSTERETIC SECOND ORDER SYSTEMS*

BY

N. MOSTAGHEL

University of Utah

The behavior of many engineering systems is governed by the second order differential equation

\[\ddot{U}(t) + F[U(t)] = \ddot{G}(t), \]

where \(\ddot{G}(t) \) is a specified oscillatory function of time \(t \), a dot denotes differentiation with respect to \(t \), \(F(U) \) is a nonlinear restoring function representing the system hysteresis, as shown in Fig. 1, and \(U(0) = \dot{U}(0) = 0 \). In a recent paper [1], it has been shown that

\[f = F(u) \leq \frac{1}{\alpha} \ddot{g}, \]

where \(f = \sup|F(U)|, u = \sup|U(t)|, \ddot{g} = \sup|\ddot{G}(t)|, \) and \(0 < \alpha \leq 1 \) is given by

\[\alpha = \frac{A}{4fu}, \]

where \(A \) is the area of the hysteresis loop.

*Received December 16, 1985.
The quality of the upper bound on $U(t)$, as given by inequality (2), deteriorates with the reduction in the initial slope of $F(U)$. That is, the estimate provided by inequality (2) is good for stiff systems. For soft systems (i.e., systems for which the initial slope of $F(U)$ is small), this estimate may be much higher than the actual values of $U(t)$.

To find a bound on $U(t)$ suitable for soft systems, both sides of Eq. (1) are multiplied by $\dot{U}(t)$, and the resulting expression is integrated over the interval $[t_i, t_{i+1}]$ to yield

$$\int_{t_i}^{t_{i+1}} F(U) \dot{U}(t) \, dt = \int_{t_i}^{t_{i+1}} G(t) \dot{U}(t) \, dt,$$

where t_i and t_{i+1} are two consecutive times of zero crossing of $\dot{U}(t)$. If both sides of Eq. (1) are multiplied by $G(t)$ and the resulting expression is integrated over the same interval $[t_i, t_{i+1}]$, it yields

$$\int_{t_i}^{t_{i+1}} \dot{U}(t) G(t) \, dt + \int_{t_i}^{t_{i+1}} F(U) G(t) \, dt = \frac{3}{2} \dot{G}^2(t),$$

where \dot{G} is the derivative of $G(t)$.

Comparing Eqs. (4) and (6), one obtains

$$\int_{t_i}^{t_{i+1}} \dot{U}(t) G(t) \, dt = -\int_{t_i}^{t_{i+1}} F(U) \dot{U}(t) \, dt.$$

Substitution from Eq. (7) into Eq. (5) results in

$$\int_{t_i}^{t_{i+1}} F(U) \dot{U}(t) \, dt + \frac{3}{2} \dot{G}^2(t_{i+1}) = \int_{t_i}^{t_{i+1}} F(U) G(t) \, dt + \frac{3}{2} \dot{G}^2(t_i).$$

Since $F(U)$ has at most one zero crossing in the time interval $[t_i, t_{i+1}]$, then

$$\int_{t_i}^{t_{i+1}} F(U) \dot{U}(t) \, dt = \int_{G(t_{i+1})}^{G(t_i)} F(U) \, dG \leq 2fg,$$

where $g = \sup |G(t)|$. Also,

$$\int_{t_i}^{t_{i+1}} F(U) \dot{U}(t) \, dt = \int_{U(t_i)}^{U(t_{i+1})} F(U) \, dU = \alpha(2fu),$$

where α is the reduction factor which makes the equality satisfied, and its value is given by relation (3). Comparisons of equalities (8) and (10) and inequality (9) yield

$$\alpha fu \leq fg + \left(\frac{1}{2}\right) \dot{g}^2,$$

where $\dot{g} = \sup |\dot{G}(t)|$. The simultaneous occurrence of f and u is an implicit assumption in both inequalities (2) and (11). Equivalently, inequality (11) can be written as

$$auF(u) \leq gF(u) + \left(\frac{1}{4}\right) \dot{g}^2.$$
This inequality yields an upper bound on u with α as a parameter suitable for soft systems.

Acknowledgment. The support of the National Science Foundation under Grant CEE-8414504 is gratefully acknowledged.

References