Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the asymptotic partition of energy in linear thermoelasticity


Author: S. Chiriţă
Journal: Quart. Appl. Math. 45 (1987), 327-340
MSC: Primary 73U05; Secondary 73C25
DOI: https://doi.org/10.1090/qam/895103
MathSciNet review: 895103
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] P. D. Lax and R. S. Phillips, Scattering theory, Academic Press, New York, 1967 MR 0217440
  • [2] A. R. Brodsky, On the asymptotic behavior of solutions of the wave equation, Proc. Amer. Math. Soc. 18. 207-208 (1967) MR 0212417
  • [3] J. A. Goldstein, An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc. 23, 359-363 (1969) MR 0250125
  • [4] J. A. Goldstein, An asymptotic property of solutions of wave equations, II. J. Math. Anal. Appl. 32, 392-399 (1970) MR 0267281
  • [5] R. J. Duffin, Equipartition of energy in wave motion, J. Math. Anal. Appl. 32, 386-391 (1970) MR 0269190
  • [6] H. A. Levine, An equipartition of energy theorem for weak solutions of evolutionary equations in Hilbert space: the Lagrange identity method, J. Differential Equations 24, 197-210 (1977) MR 0437874
  • [7] W. A. Day, Means and autocorrelations in elastodynamics, Arch. Rat. Mech. Anal. 73, 243-256 (1980) MR 564662
  • [8] H. A. Levine, On a theorem of Knops and Payne in dynamical linear thermoelasticity, Arch. Rat. Mech. Anal. 38, 290-319 (1970) MR 0266481
  • [9] G. Dassios and M. Grillakis, Dissipation rates and partition of energy in thermoelasticity, Arch. Rat. Mech. Anal. 87, 49-91 (1984) MR 760319
  • [10] G. Fichera, Existence theorems in elasticity, in Handbuch der physik, vol. VIa/2, ed. C. Truesdell, Springer, Berlin, 1972
  • [11] D. E. Carlson, Linear thermoelasticity, in Handbuch der physik, vol. VIa/2, ed. C. Truesdell, Springer, Berlin, 1972 MR 0347187
  • [12] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975 MR 0450957
  • [13] L. Brun, Méthodes énergétiques dans les systèmes évolutifs linéaires, J. Mécanique 8, 125-192 (1969)
  • [14] R. J. Knops and E. W. Wilkes, Theory of elastic stability, in Handbuch der physik, vol. VIa/3, ed. C. Truesdell, Springer, Berlin, 1973
  • [15] I. Hlaváček and J. Nečas, On inequalities of Korn's type, Arch. Rat. Mech. Anal. 36, 305-334 (1970)
  • [16] C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rat. Mech. Anal 29, 241-271 (1968) MR 0233539
  • [17] W. A. Day, Cesàro means and recurrence in dynamic thermoelasticity, Mathematika 28, 211-230 (1981) MR 645102
  • [18] W. A. Day, Mean and recurrence properties of the temperature in dynamic thermoelasticity, J. Elasticity 13, 225-230 (1983) MR 711133

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73U05, 73C25

Retrieve articles in all journals with MSC: 73U05, 73C25


Additional Information

DOI: https://doi.org/10.1090/qam/895103
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society