Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Periodic solutions of the equation $ \ddot x+g(x)=E\,{\rm cos}\,t+\sigma h(t)\dot x$


Authors: Luiz A. Ladeira and Plácido Z. Táboas
Journal: Quart. Appl. Math. 45 (1987), 429-440
MSC: Primary 58F14; Secondary 34C25
DOI: https://doi.org/10.1090/qam/910451
MathSciNet review: 910451
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. K. Hale, Ordinary Differential Equations, 2nd ed., Kreiger Publ. Co., Huntington, N.Y. (1980) MR 587488
  • [2] W. S. Loud, Periodic solutions of nonlinear differential equations of Duffing type, Proc. US-Japan Seminar on Differential and Functional Equations, 199-224 (1967) MR 0223656
  • [3] W. S. Loud, Branching phenomena for periodic solutions of non-autonomous piecewise linear systems, Internat. J. Non-Linear Mech. 3, 273-293 (1968) MR 0234064
  • [4] W. S. Loud, Nonsymmetric periodic solutions of certain second order nonlinear differential equations, J. Differential Equations 5, 352-368 (1969) MR 0235208
  • [5] L. F. Shampine and M. K. Gordon, Computer solutions of ordinary differential equations--the initial value problem, W. H. Freeman, New York, 1975 MR 0478627
  • [6] A. L. Vanderbauwhede, Generic and nongeneric bifurcation for the von Karman equations, J. Math. Anal. Appl. 66, 550-573 (1978) MR 517746

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 58F14, 34C25

Retrieve articles in all journals with MSC: 58F14, 34C25


Additional Information

DOI: https://doi.org/10.1090/qam/910451
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society