A linear Volterra integro-differential equation for viscoelastic rods and plates

Author:
Richard D. Noren

Journal:
Quart. Appl. Math. **45** (1987), 503-514

MSC:
Primary 45J05; Secondary 45D05, 73K05, 73K10

DOI:
https://doi.org/10.1090/qam/910457

MathSciNet review:
910457

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the resolvent kernel of a certain Volterra integrodifferential equation in Hilbert space is absolutely integrable on . Weaker assumptions on the convolution kernel appearing in the integral term are used than in existing results. The equation arises in the linear theory of isotropic viscoelastic rods and plates.

**[1]**D. R. Bland,*The theory of linear viscoelasticity*, Pergamon Press, New York, 1960 MR**0110314****[2]**R. W. Carr and K. B. Hannsgen,*A nonhomogeneous integrodifferential equation in Hilbert space*, SIAM J. Math. Anal.**10**, 961-984 (1979) MR**541094****[3]**R. W. Carr and K. B. Hannsgen,*Resolvent formulas for a Volterra equation in Hilbert space*, SIAM J. Math. Anal.**13**, 459-483 (1982) MR**653467****[4]**K. B. Hannsgen,*Indirect abelian theorems and a linear Volterra equation*, Trans. Amer. Math. Soc.**142**, 539-555 (1969) MR**0246058****[5]**K. B. Hannsgen,*Uniform behavior for an integrodifferential equation with parameter*, SIAM J. Math. Anal.**8**, 626-639 (1977) MR**0463848****[6]**K. B. Hannsgen,*A linear integrodifferential equation for viscoelastic rods and plates*, Quart. Appl. Math.**41**, 75-83 (1983) MR**700662****[7]**K. B. Hannsgen and R. L. Wheeler,*Behavior of the solution of a Volterra equation as a parameter tends to infinity*, J. Integral Equations**7**, 229-237 (1984) MR**770149****[8]**W. J. Hrusa and M. Renardy,*On a class of quasilinear integrodifferential equations with singular kernels*, J. Differential Equations, in press**[9]**W. J. Hrusa and M. Renardy,*On wave propagation in linear viscoelasticity*, Quart. Appl. Math.**43**, 237-253 (1985) MR**793532****[10]**J. Lightbourne II,*An abstract integral equation with nonlinear perturbation*, in preparation**[11]**R. D. Noren,*Uniform behavior for a Volterra equation with a parameter*, (to appear SIAM J. Math. Anal.) MR**930026****[12]**D. F. Shea and S. Wainger,*Variants of the Wiener-Lévy theorem, with applications to stability problems for some Volterra integral equations*, Amer. J. Math.**97**, 312-343 (1975) MR**0372521**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
45J05,
45D05,
73K05,
73K10

Retrieve articles in all journals with MSC: 45J05, 45D05, 73K05, 73K10

Additional Information

DOI:
https://doi.org/10.1090/qam/910457

Article copyright:
© Copyright 1987
American Mathematical Society