Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A linear Volterra integro-differential equation for viscoelastic rods and plates

Author: Richard D. Noren
Journal: Quart. Appl. Math. 45 (1987), 503-514
MSC: Primary 45J05; Secondary 45D05, 73K05, 73K10
DOI: https://doi.org/10.1090/qam/910457
MathSciNet review: 910457
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the resolvent kernel of a certain Volterra integrodifferential equation in Hilbert space is absolutely integrable on $ \left( {0,\infty } \right)$. Weaker assumptions on the convolution kernel appearing in the integral term are used than in existing results. The equation arises in the linear theory of isotropic viscoelastic rods and plates.

References [Enhancements On Off] (What's this?)

  • [1] D. R. Bland, The theory of linear viscoelasticity, Pergamon Press, New York, 1960 MR 0110314
  • [2] R. W. Carr and K. B. Hannsgen, A nonhomogeneous integrodifferential equation in Hilbert space, SIAM J. Math. Anal. 10, 961-984 (1979) MR 541094
  • [3] R. W. Carr and K. B. Hannsgen, Resolvent formulas for a Volterra equation in Hilbert space, SIAM J. Math. Anal. 13, 459-483 (1982) MR 653467
  • [4] K. B. Hannsgen, Indirect abelian theorems and a linear Volterra equation, Trans. Amer. Math. Soc. 142, 539-555 (1969) MR 0246058
  • [5] K. B. Hannsgen, Uniform $ {L^1}$ behavior for an integrodifferential equation with parameter, SIAM J. Math. Anal. 8, 626-639 (1977) MR 0463848
  • [6] K. B. Hannsgen, A linear integrodifferential equation for viscoelastic rods and plates, Quart. Appl. Math. 41, 75-83 (1983) MR 700662
  • [7] K. B. Hannsgen and R. L. Wheeler, Behavior of the solution of a Volterra equation as a parameter tends to infinity, J. Integral Equations 7, 229-237 (1984) MR 770149
  • [8] W. J. Hrusa and M. Renardy, On a class of quasilinear integrodifferential equations with singular kernels, J. Differential Equations, in press
  • [9] W. J. Hrusa and M. Renardy, On wave propagation in linear viscoelasticity, Quart. Appl. Math. 43, 237-253 (1985) MR 793532
  • [10] J. Lightbourne II, An abstract integral equation with nonlinear perturbation, in preparation
  • [11] R. D. Noren, Uniform $ {L^1}$ behavior for a Volterra equation with a parameter, (to appear SIAM J. Math. Anal.) MR 930026
  • [12] D. F. Shea and S. Wainger, Variants of the Wiener-Lévy theorem, with applications to stability problems for some Volterra integral equations, Amer. J. Math. 97, 312-343 (1975) MR 0372521

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 45J05, 45D05, 73K05, 73K10

Retrieve articles in all journals with MSC: 45J05, 45D05, 73K05, 73K10

Additional Information

DOI: https://doi.org/10.1090/qam/910457
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society