Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A note on the Stokes paradox

Author: S. H. Smith
Journal: Quart. Appl. Math. 45 (1987), 529-531
MSC: Primary 76D07
DOI: https://doi.org/10.1090/qam/910459
MathSciNet review: 910459
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A particular solution of the Stokes' flow equations is presented which shows a nonuniformity of limits between the near and far flow fields which relates to the Stokes' paradox.

References [Enhancements On Off] (What's this?)

  • [1] J. M. Dorrepaal, M. E. O'Neill, and K. B. Ranger, Two-dimensional Stokes flows with cylinders and line singularities, Mathematika 31, 65-75 (1984) MR 762178
  • [2] G. B. Jeffery, The rotation of two circular cylinders in a viscous fluid, Proc. Roy. Soc. A. 101, 169-176 (1922)
  • [3] S. Kaplun and P. Lagerstrom, Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers, J. Math. Mech. 6, 585-593 (1957) MR 0091693
  • [4] C. W. Oseen, Ueber die Stokes'sche Formel, und über eine verwandte Aufgabe in der Hydrodynamik, Ark. Math. Astronom. Fys 6, No. 29 (1910)
  • [5] I. Proudman and J. R. A. Pearson, Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder, J. Fluid Mech. 2, 237-262 (1957) MR 0086545

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76D07

Retrieve articles in all journals with MSC: 76D07

Additional Information

DOI: https://doi.org/10.1090/qam/910459
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society