Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A rigorous justification of the Reynolds equation

Author: Giovanni Cimatti
Journal: Quart. Appl. Math. 45 (1987), 627-644
MSC: Primary 76N10; Secondary 35Q10, 76D08
DOI: https://doi.org/10.1090/qam/917014
MathSciNet review: 917014
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A small parameter technique is used to derive Reynolds' lubrication equation from the Stokes equation. The error associated with the approximation is estimated in suitable norms.

References [Enhancements On Off] (What's this?)

  • [1] G. Adler, Maggiorazione del gradiente delle funzioni armoniche mediante i loro vatori al contorno, Mem. Acc. Naz. Lincei VI, 183-201 (1961)
  • [2] G. Cimatti, How the Reynolds equation is related to the Stokes equations, Appl. Math. and Opt. 10, 267-274 (1983) MR 722490
  • [3] H. G. Elrod, A derivation of the basic equations for hydrodynamic lubrication with a fluid having constant properties, Quart. Appl. Math. 27, 349-359 (1960) MR 0109552
  • [4] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of the second order, Springer, 1983 MR 737190
  • [5] A. Gross, Fluid film lubrication, John Wiley, 1980
  • [6] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, 1969 MR 0254401
  • [7] C. Miranda, Formule di maggiorazione e teorema di esistenza per le funzioni biarmoniche in due variabili, Giorn. Mat. Battaglini 78, 97-118 (1948) MR 0030058
  • [8] O. Pincus and B. Sternlicht, Theory of hydrodynamic lubrication, McGraw-Hill, 1961
  • [9] O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments including an experimental determination of the viscosity of olive oil, Phil. Trans. Roy. Soc. London 177, 157-234 (1886)
  • [10] G. H. Wannier, A contribution to the hydrodynamics of lubrication, Quart. Appl. Math. 8, 1-32 (1950) MR 0037146
  • [11] G. Bayada & M. Chambat, The transition between the Stokes and the Reynolds equation: A mathematical proof, Appl. Math. Optim. 14, 73-93 (1986) MR 826853

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76N10, 35Q10, 76D08

Retrieve articles in all journals with MSC: 76N10, 35Q10, 76D08

Additional Information

DOI: https://doi.org/10.1090/qam/917014
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society