Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Existence globale de solutions faibles sous une hypothèse unilaterale pour un système hyperbolique non linéaire


Author: D. Serre
Journal: Quart. Appl. Math. 46 (1988), 157-167
MSC: Primary 35L60; Secondary 65M10
DOI: https://doi.org/10.1090/qam/934689
MathSciNet review: 934689
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate a one-dimensional system of two conservation laws, cited by Leroux. The hyperbolicity region is nonconvex in the phase plane. It is a particular case of a general class studied by B. Temple.


References [Enhancements On Off] (What's this?)

  • [1] J. GLIMM, Solutions in the large for nonlinear hyperbolic systems of equations, C.P.A.M. XVII, 697-715 (1965) MR 0194770
  • [2] P. D. LAX, Hyperbolic systems of conservation laws II, C.P.A.M. X, 537-566 (1957) MR 0093653
  • [3] A. Y. LEROUX and M. SCHATZMAN, Analyse et approximation de problèmes hyperboliques non linéaires, Cours INRIA (1978), non publié
  • [4] M. RASCLE, The Riemann problem for a nonlinear non-strictly hyperbolic system arising in biology, Comp. Math. Appl. 11, 223-238 (1985) MR 787438
  • [5] D. SERRE, Solutions à variation bornée pour certains systèmes hyperboliques de lois de conservation, J. D. E. 68, No. 2, 137-168 (1987) MR 892021
  • [6] B. TEMPLE, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc. 280, 781-795 (1983) MR 716850
  • [7] R. J. LEVEQUE and B. TEMPLE, Stability of Godunov's method for a class of $ 2 \times 2$ systems of conservation laws, Trans. Amer. Math. Soc. 288, No. 1, 115-123 (1985) MR 773050

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35L60, 65M10

Retrieve articles in all journals with MSC: 35L60, 65M10


Additional Information

DOI: https://doi.org/10.1090/qam/934689
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society