Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Metastable equilibrium of fluids with surface tension


Author: Epifanio G. Virga
Journal: Quart. Appl. Math. 46 (1988), 217-228
MSC: Primary 58E30; Secondary 49F10, 49F22, 53A10, 58E12, 76E99, 76T05
DOI: https://doi.org/10.1090/qam/950598
MathSciNet review: 950598
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the effects of the surface tension on the equilibrium of fluids. It shows that, when a fluid with an incompressible fluid inclusion is put in a fluid environment kept at constant pressure, equilibrium configurations may arise whose character of stability is affected by the sign of the perturbations of the environmental pressure. Such configurations we refer to as metastable.


References [Enhancements On Off] (What's this?)

  • [A1] A. D. Alexandrov, Uniqueness theorems for surfaces in the large, V, Vestnik Leningrad Univ. 13, 5-8 (1958), English translation, Amer. Math. Soc. Transl. 21, 412-413 (1962) MR 0102114
  • [A2] A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. 58, 303-315 (1962) MR 0143162
  • [B] M. H. I. Baird, The stability of inverse bubbles, Trans. Faraday Soc., 56, 213-219 (1960)
  • [DG1] E. De Giorgi, Su una teoria generale della misura $ \left( {r - 1} \right)$-dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl. (4) 36, 191-213 (1954) MR 0062214
  • [DG2] E. De Giorgi, Nuovi teoremi relativi alle misure $ \left( {r - 1} \right)$-dimensionali in uno spazio ad r dimensioni, Ricerche Mat. 4, 95-113 (1955) MR 0074499
  • [DG3] E. De Giorgi, Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Mem. Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. 5, 33-44 (1958)
  • [DR] J. T. Davies and E. K. Rideal, Interfacial phenomena, Academic Press, New York, 1961
  • [FF] H. Federer and W. Fleming, Normal and integral currents, Ann. Math. 72, 458-520 (1960) MR 0123260
  • [FR] W. Fleming and R. Rishel, An integral formula for total gradient variation, Arch. Math. 11, 218-222 (1960) MR 0114892
  • [Gi] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhauser, Boston, 1984 MR 775682
  • [GM] M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surfaces, Arch. Rat. Mech. Anal. 57, 291-323 (1975) MR 0371223
  • [Gu] M. E. Gurtin, An introduction to continuum mechanics, Academic Press, New York, 1981 MR 636255
  • [H] H. Hopf, Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr. 4, 232-249 (1950-1951) MR 0040042
  • [HLP] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952 MR 0046395
  • [La] H. Lamb, Hydrodynamics, Dover, New York, 1945
  • [Li] G. H. Liebmann, Ueber die Verbiegung der geschlossenen Flächen positiver Krümmung, Math. Ann. 53, 81-112 (1900) MR 1511083
  • [O] R. Ossermann, The isoperimetric inequality, Bull. Amer. Math. Soc. 84, 1182-1237 (1978) MR 0500557
  • [R1] R. C. Reilly, Applications of the integral of an invariant of the Hessian, Bull. Amer. Math. Soc. 82, 579-580 (1976) MR 0415540
  • [R2] R. C. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26, 459-472 (1977) MR 0474149
  • [T] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110, 353-372 (1976) MR 0463908

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 58E30, 49F10, 49F22, 53A10, 58E12, 76E99, 76T05

Retrieve articles in all journals with MSC: 58E30, 49F10, 49F22, 53A10, 58E12, 76E99, 76T05


Additional Information

DOI: https://doi.org/10.1090/qam/950598
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society