Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Quasistatic processes for elastic-viscoplastic materials


Authors: Ioan R. Ionescu and Mircea Sofonea
Journal: Quart. Appl. Math. 46 (1988), 229-243
MSC: Primary 73F15; Secondary 73F30
DOI: https://doi.org/10.1090/qam/950599
MathSciNet review: 950599
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. Anzellotti, On the existence of the rates of stress and displacement for Prandtl-Reuss plasticity, Quart. Appl. Math. 61, 181-208 (1983) MR 719504
  • [2] G. Anzellotti and M. Giaquinta, Existence of the displacement field for an elastoplastic body subject to Hencky's law and von Mises yield condition, Manuscripta Math. 32, 101-136 (1980) MR 592713
  • [3] N. Cristescu and I. Suliciu, Viscoplasticity, Martinus Nijhoff, The Netherlands, Ed. Tehnica, Bucharest (1982) MR 691135
  • [4] G. Dinca, Sur la monotonie d'après Minty-Browder de l'opérateur de la théorie de la plasticité, C. R. Acad. Sci. Paris 269, 535-538 (1969) MR 0253100
  • [5] M. Djaoua and P. Suquet, Evolution quasi-statique des milieux visco-plastique de Maxwell-Norton, Math. Methods Appl. Sci. 6 192-205 (1984) MR 751740
  • [6] G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris (1972) MR 0464857
  • [7] G. Fichera, Existence theorems in elasticity, Handbuch der Physik, VI/a 2, Springer-Verlag, Berlin (1972)
  • [8] H. Geiringer and A. M. Freudenthal, The mathematical theories of the inelastic continuum, Handbuch der Physik, Springer-Verlag, Berlin (1958) MR 0093963
  • [9] M. E. Gurtin, W. O. Williams, and I. Suliciu, On rate-type constitutive equations and the energy of viscoelastic and viscoplastic materials, Internat. J. Solids and Structures 16, 607-617 (1980) MR 574492
  • [10] W. Hahn, Stability of motion, Springer-Verlag, Berlin (1967) MR 0223668
  • [11] I. R. Ionescu and M. Sofonea, On existence and behaviour of the solution of a quasistatic elastic-visco-plastic problem, Preprint Series in Math., INCREST, Bucharest, 37 (1985)
  • [12] D. L. Lovelady and R. H . Martin, Jr., A global existence theorem for a nonautonomous differential equation in a Banach space, Proc. Amer. Math. Soc. 35, 445-449 (1972) MR 0303035
  • [13] P. Mazilu and S. Sburlan, Metode functional în rezolvarea ecuatiilor teoriei elasticitatii (Functional methods for the solving of the equations of the theory of elasticity), Ed. Acad. RSR, Bucuresti (1973)
  • [14] N. Pavel and C. Ursescu, Existence and uniqueness for some nonlinear functional equations in a Banach space, An. Stiint Univ. ``Al. I. Cuza'' Iasi Sect. Ia Mat. 20, 53-58 (1974) MR 0346263
  • [15] P. Podio-Guidugli and I. Suliciu, On rate-type viscoelasticity and the second law of thermodynamics, Internat. J. Non-Linear Mech. 19, 6, 545-564 (1984) MR 769359
  • [16] I. Suliciu, Some energetic properties of smooth solutions in rate-type viscoelasticity, Internat. J. Non-Linear Mech. 19, 6, 525-544 (1984) MR 769360
  • [17] P. Suquet, Sur les équations de la plasticité: existence et régularité des solutions, J. Méc. Théor. Appl. 20, 3-39 (1981) MR 618942
  • [18] P. Suquet, Evolution problems for a class of dissipative materials, Quart Appl. Math. 38, 391-414 (1981) MR 614549
  • [19] J. Nečas and J. Kratochvil, On the existence of solutions of boundary-value problems for elastic-inelastic solids, Comment. Math. Univ. Carolinae 14, 755-760 (1973) MR 0337100
  • [20] P. Laborde, On visco-plasticity with hardening, Numer. Funct. Anal. Optim. 1, 315-339 (1979) MR 537835
  • [21] P. Suquet, Plasticité et homogénéisation, Thèse, Université Paris 6 (1982)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73F15, 73F30

Retrieve articles in all journals with MSC: 73F15, 73F30


Additional Information

DOI: https://doi.org/10.1090/qam/950599
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society