Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

The Atkinson-Wilcox expansion theorem for elastic waves


Author: George Dassios
Journal: Quart. Appl. Math. 46 (1988), 285-299
MSC: Primary 73D25
DOI: https://doi.org/10.1090/qam/950603
MathSciNet review: 950603
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the problem of scattering of an elastic wave by a three-dimensional bounded and smooth body. In the region exterior to a sphere that includes the scatterer, any solution of Navier's equation that satisfies the Kupradze's radiation condition has a uniformly and absolutely convergent expansion in inverse powers of the radial distance from the center of the sphere. Moreover, the coefficients of the expansion can recurrently be evaluated from the knowledge of the leading coefficient, known as radiation pattern. Therefore, a one-to-one correspondence between the scattered fields and the corresponding radiation patterns is established. The acoustic and electromagnetic cases are recovered as special cases.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73D25

Retrieve articles in all journals with MSC: 73D25


Additional Information

DOI: https://doi.org/10.1090/qam/950603
Article copyright: © Copyright 1988 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website