Initial-boundary value problems for the equation

Authors:
K. Kuttler and D. Hicks

Journal:
Quart. Appl. Math. **46** (1988), 393-407

MSC:
Primary 35L70; Secondary 35Q20, 73F15

DOI:
https://doi.org/10.1090/qam/963578

MathSciNet review:
963578

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Existence and uniqueness theorems are proved for global weak solutions of initial-boundary value problems corresponding to the equation

**[1]**E. C. Aifantis and J. B. Serrin,*The mechanical theory of fluid interfaces and Maxwell's rule*, J. Colloid Interface Sci.**96**, 517-529 (1983)**[2]**G. Andrews,*On the existence of solutions to the equation*, J. Differential Equations**35**, 200-231 (1980) MR**561978****[3]**G. Andrews and J. M. Ball,*Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity*, J. Differential Equations**44**, 306-341 (1982) MR**657784****[4]**C. Dafermos,*The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity*, J. Differential Equations**6**, 71-86 (1969) MR**0241831****[5]**J. M. Greenberg,*On the existence, uniqueness, and stability of solutions of the equation*, J. Math. Anal. Appl.**25**, 575-591 (1969) MR**0240473****[6]**J. M. Greenberg and R. C. MacCamy,*On the exponential stability of solutions of*, J. Math. Anal. Appl.**31**, 406-417 (1970) MR**0273178****[7]**J. M. Greenberg, R. C. MacCamy, and V. J. Mizel,*On the existence, uniqueness, and stability of solutions of the equation*, J. Math. Mech.**17**, 707-728 (1968) MR**0225026****[8]**Ya Kanel,*Certain systems of quasi-linear parabolic equations of divergence type*, USSR Comput. Math. and Math. Phys.**6**, 74-88 (1966) MR**0199561****[9]**Ya Kanel,*A model system of equations for the one-dimensional motion of a gas*, Differential Equations**4**, 374-380 (1968) (English translation) MR**0227619****[10]**A. V. Kazhikhov,*Correctness ``in the large'' of mixed-boundary value problems for a model system of equations of a viscous gas*, Dinamika Splošn. Sredy**21**, 18-47 (1975) (in Russian) MR**0478984****[11]**A. V. Kazhikhov and V. B. Nikolaev,*Correctness of boundary value problems for equations of gas dynamics with a nonmonotone state function*, Čisl. Metody Meh. Splošn. Sredy**10**, 77-84 (1979) (in Russian) MR**558830****[12]**K. Kuttler and D. Hicks,*Initial-boundary value problems for some nonlinear conservation laws*, Applicable Anal.**24**, 1-12 (1987) MR**904732****[13]**K. Kuttler,*Regularity of weak solutions of some nonlinear conservation laws*, Applicable Analysis, Vol.**26**, October 1987 MR**916896****[14]**K. Kuttler,*Time dependent implicit evolution equations*, Nonlinear Anal. Theory, Methods Appl.**10**(5), 447-463 (1986) MR**839357****[15]**K. Kuttler,*Initial boundary value problems for the displacement in an isothermal viscous gas*, submitted MR**1073953****[16]**K. Kuttler and E. Aifantis,*Existence and uniqueness in nonclassical diffusion*, Quart. Appl. Math.**45**, 549-560 (1987) MR**910461****[17]**J.-L. Lions,*Quelques méthodes de résolution des problèmes aux limites non linéaires*, Dunod, Paris, 1969**[18]**R. Pego,*Phase transitions in one-dimensional nonlinear visco-elasticity: admissibility and stability*, Arch. Rat. Mech. Anal. V.**97**(4), 353-394 (1987) MR**865845****[19]**R. E. Showalter,*Hilbert space methods for partial differential equations*, Pittman, 1977 MR**0477394****[20]**V. A. Solonnikov and A. V. Kazhikhov,*Existence theorems for the equations of motion of a compressible viscous fluid*, Annual Rev. Fluid Mech.**13**, 79-95 (1981)**[21]**D. Gilbarg and N. S. Trudinger,*Elliptic partial differential equations of second order*, Springer-Verlag, 1977 MR**0473443**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L70,
35Q20,
73F15

Retrieve articles in all journals with MSC: 35L70, 35Q20, 73F15

Additional Information

DOI:
https://doi.org/10.1090/qam/963578

Article copyright:
© Copyright 1988
American Mathematical Society