A zero-dimensional shock

Author:
Stuart S. Antman

Journal:
Quart. Appl. Math. **46** (1988), 569-581

MSC:
Primary 34C05; Secondary 70K05, 70K99, 73F99

DOI:
https://doi.org/10.1090/qam/963591

MathSciNet review:
963591

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**S. S. Antman and R. Malek-Madani,*Dissipative mechanisms*, in*Metastability and incompletely posed problems*, edited by S. S. Antman, J. L. Ericksen, D. Kinderlehrer, I. Müller, IMA Volumes in Mathematics and Its Applications, Vol. 3, Springer-Verlag, 1987, pp. 1-16 MR**870005****[2]**E. A. Coddington and N. Levinson,*Theory of ordinary differential equations*, McGraw-Hill, 1955 MR**0069338****[3]**C. M. Dafermos,*The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity*, J. Diff. Eqs.**6**, 71-86 (1969) MR**0241831****[4]**R. DiPerna,*Convergence of approximate solutions to conservation laws*, Arch. Rat. Mech. Anal.**82**, 27-70 (1983) MR**684413****[5]**R. DiPerna,*Convergence of viscosity method for isentropic gas dynamics*, Comm. Math. Phys.**91**, 1-30 (1983) MR**719807****[6]**J. M. Greenberg, R. C. MacCamy & V. J. Mizel,*On the existence, uniqueness, and stability of solutions of the equation*, J. Math. Mech.**17**, 707-728 (1968) MR**0225026****[7]**E. Hopf,*The partial differential equation*, Comm. Pure Appl. Math.**3**, 201-230 (1950) MR**0047234****[8]**Ya. I. Kanel',*On a model system of equations of one-dimensional gas motion*(in Russian), Diff. Urav.**4**, 721-734 (1968). Engl. transl., Diff. Eqs.**4**, 374-380**[9]**R. C. MacCamy,*Existence, uniqueness, and stability of*, Indiana Univ. Math. J.**20**, 231-238 (1970) MR**0265790**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
34C05,
70K05,
70K99,
73F99

Retrieve articles in all journals with MSC: 34C05, 70K05, 70K99, 73F99

Additional Information

DOI:
https://doi.org/10.1090/qam/963591

Article copyright:
© Copyright 1988
American Mathematical Society