The random eigenvalue problem for a differential equation containing small white noise

Author:
Ning Mao Xia

Journal:
Quart. Appl. Math. **46** (1988), 611-630

MSC:
Primary 60H10; Secondary 34B25, 34F05

DOI:
https://doi.org/10.1090/qam/973379

MathSciNet review:
973379

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By means of the extended Ito integral and the shooting method, this paper concerns the random problem containing white noise :

**[1]**W. E. Boyce,*Random eigenvalue problems*, in Probabilistic Methods in Applied Mathematics, Vol. 1, A. T. Bharucha-Reid (Editor), Academic Press, New York, 1968, 1-73 MR**0263171****[2]**J. vom Scheidt and W. Purkert,*Random Eigenvalue Problems*, Akademie-Verlag, Berlin, 1983 MR**790850****[3]**W. E. Boyce and Ning-Mao Xia,*The approach to normality of the solutions of random boundary and eigenvalue problems with weakly correlated coefficients*, Quart. Appl. Math.**40**, 419-445 (1983) MR**693876****[4]**W. E. Boyce and Ning-Mao Xia,*Upper bounds for the means of eigenvalues of random boundary value problems with weakly correlated coefficients*, Quart. Appl. Math.**42**, 439-454 (1985) MR**766881****[5]**G. Birkhoff and G.-C. Rota,*Ordinary Differential Equations*, 3rd ed., Wiley, New York, 1978 MR**507190****[6]**Ning-Mao Xia,*The distribution function of the solution of the random eigenvalue problem for differential equations*, J. Math. Anal. Appl.**130**, 577-589 (1988) MR**929964****[7]**Ning-Mao Xia,*The solutions for the two-point boundary value problems of stochastic differential equations containing small white noises*, Acta Mathematicae Applicate**8**, 340-350 (1985) (in Chinese) MR**843408****[8]**Ning-Mao Xia,*The density function of the solution of a two-point boundary value problem containing small stochastic processes*, Quart. Appl. Math.**46**, 29-47 (1988) MR**934679****[9]**Ning-Mao Xia,*Two-point boundary value problem of linear random differential equations containing small parameter and applications to one-dimensional Helmholtz equation*, Journal of Systems Science and Mathematical Sciences**7**, 129-137 (1987) (in Chinese) MR**886620****[10]**Ning-Mao Xia,*Upper bounds for the means of the higher eigenvalues of random eigenvalue problems*, Journal of East China Institute of Chemical Technology**12**, 115-119 (1986) (in Chinese)**[11]**I. I. Gikhman and A. V. Skorokhod,*Stochastic Differential Equations*, Springer-Verlag, New York, Heidelberg, Berlin, 1972**[12]**L. Arnold, Stochastic*Differential Equations: Theory and Applications*, John-Wiley, New York, 1974 MR**0443083****[13]**B. S. White and J. N. Franklin,*A Limit Theorem for Stochastic Two-point Boundary Value Problems of Ordinary Differential Equations*, Commun. Pure Appl. Math.**32**, 253-275 (1979) MR**512421****[14]**L. A. Pastur,*Spectra of random self-adjoint operators*, Russian Math. Surveys**28**, 1-67 (1973) MR**0406251**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
60H10,
34B25,
34F05

Retrieve articles in all journals with MSC: 60H10, 34B25, 34F05

Additional Information

DOI:
https://doi.org/10.1090/qam/973379

Article copyright:
© Copyright 1988
American Mathematical Society