Skip to Main Content
Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The figure-of-$8$ librations of the gravity gradient pendulum and modes of an orbiting tether


Author: Peter J. Melvin
Journal: Quart. Appl. Math. 46 (1988), 637-663
MSC: Primary 70M05; Secondary 70-04, 70K20, 70K40
DOI: https://doi.org/10.1090/qam/973381
MathSciNet review: 973381
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An algorithm is presented for the Hill-Poincaré analytical continuation of the out-of-plane normal mode of the gravity gradient pendulum. The Poincaré-Lindstedt solution employs 17 Poisson series and 24 recursion relations and was evaluated to the 50th order on a CRAY. The trajectories of the nonlinear normal modes are figures-of-8 on the unit sphere which can be computed nearly to the orbit normal. Numerical integrations indicate further that 1) initial conditions computed at the nadir can be used to generate figures-of-8 over the pole, 2) the single hemispherical figures-of-8 appear to be stable at large amplitudes, and 3) the gravity gradient pendulum has chaotic solutions. A theory is developed for the linear normal modes of a tethered satellite, and the eigenvalues are found for the rosary tether.


References [Enhancements On Off] (What's this?)

    G. W. Hill, Researches in the Lunar Theory, in The collected works of George William Hill, Carnegie Institute of Washington, Memoir No. 32, 284–335 (1905) P. C. Hughes, Spacecraft attitude dynamics, John Wiley and Sons, New York (1986)
  • George D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. With an addendum by Jurgen Moser. MR 0209095
  • R. M. Rosenberg, On normal mode vibrations, Proc. Cambridge Philos. Soc. 60 (1964), 595–611. MR 163464
  • P. J. Melvin, On deviations from linear wave motion in inhomogeneous stars, Quart. Appl. Math. 35, 75–97 (1977) R. H. Rand, A direct method for non-linear normal modes, Internat. J. Non-Linear Mech. 9, 363–368 (1974)
  • L. A. Month and R. H. Rand, An application of the Poincaré map to the stability of nonlinear normal modes, Trans. ASME Ser. E. J. Appl. Mech. 47 (1980), no. 3, 645–651. MR 586374
  • G. Pecelli and E. S. Thomas, Normal modes, uncoupling, and stability for a class of nonlinear oscillators, Quart. Appl. Math. 37 (1979/80), no. 3, 281–301. MR 548988, DOI https://doi.org/10.1090/S0033-569X-1979-0548988-X
  • Y. Nejoh, A nonlinear normal mode in an anharmonic lattice with a single defect, Physica Scripta 28, 561–564 (1983)
  • W. E. Ferguson Jr., H. Flaschka, and D. W. McLaughlin, Nonlinear normal modes for the Toda chain, J. Comput. Phys. 45 (1982), no. 2, 157–209. MR 657490, DOI https://doi.org/10.1016/0021-9991%2882%2990116-4
  • S. Briere, Nonlinear normal mode initialization of a limited area model, Mon Weather Rev, 110, 1166–1186 (1982)
  • Peter J. Melvin, On the construction of Poincaré-Lindstedt solutions: the nonlinear oscillator equation, SIAM J. Appl. Math. 33 (1977), no. 1, 161–194. MR 441050, DOI https://doi.org/10.1137/0133011
  • R. R. Dasenbrock, A FORTRAN-based program for computerized algebraic manipulation, NRL Report 8611, Naval Research Laboratory, Washington, D. C., 1982 A. Deprit and A. Rom, The main problem of artificial satellite theory for small and moderate eccentricities, Celestial Mechanics 2, 166–206 (1970) T. A. Bray and C. L. Goudas, Doubly symmetric orbits about the collinear Lagrangian points, Astron. J. 72, No. 2 (1967) R. H. Vassar and R. B. Sherwood, Formationkeeping for a Pair of Satellites in a Circular Orbit, J. Guidance, Control and Dynamics 8, No. 2, 235–242 (1985) K. R. Symon, Mechanics, Second Edition, Addison-Wesley, Reading, Massachusetts, 1960
  • Herbert Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, Mass., 1951. MR 0043608
  • Peter J. Melvin, The phase-shifting limit cycles of the van der Pol equation, J. Res. Nat. Bur. Standards 83 (1978), no. 6, 593–601. MR 525450, DOI https://doi.org/10.6028/jres.083.040
  • André Deprit, Celestial mechanics: never say no to a computer, J. Guidance Control 4 (1981), no. 6, 577–581. MR 639517
  • André Deprit and Dieter S. Schmidt, Exact coefficients of the limit cycle in van der Pol’s equation, J. Res. Nat. Bur. Standards 84 (1979), no. 4, 293–297. MR 544092, DOI https://doi.org/10.6028/jres.084.013
  • Mohammad B. Dadfar, James Geer, and Carl M. Andersen, Perturbation analysis of the limit cycle of the free van der Pol equation, SIAM J. Appl. Math. 44 (1984), no. 5, 881–895. MR 759703, DOI https://doi.org/10.1137/0144063
  • J. V. Breakwell and J. W. Gearhart, Pumping a tethered configuration to boost its orbit around an oblate planet, J. Astronaut. Sci. 35, No. 1 (1987)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 70M05, 70-04, 70K20, 70K40

Retrieve articles in all journals with MSC: 70M05, 70-04, 70K20, 70K40


Additional Information

Article copyright: © Copyright 1988 American Mathematical Society