Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Computational methods for generalized Thomas-Fermi models of neutral atoms

Authors: C. Y. Chan and Y. C. Hon
Journal: Quart. Appl. Math. 46 (1988), 711-726
MSC: Primary 81G45; Secondary 34A50, 34B15, 34B27, 65L10
DOI: https://doi.org/10.1090/qam/973385
MathSciNet review: 973385
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] V. Bush and S. H. Caldwall, Thomas-Fermi equation solution by the differential analyzer, Phys. Rev. 38, 1898-1901 (1931)
  • [2] C. Y. Chan and Y. C. Hon, A constructive solution for a generalized Thomas-Fermi theory of ionized atoms, Quart. Appl. Math. 45, 591-599 (1987) MR 910465
  • [3] E. Fermi, Un metodo statistico per la determinazione di alcune proprietá dell' atomo, Rend. Accad. Naz. del Lincei, Cl. Sci. Fis., Mat. e. Nat. (6) 6, 602-607 (1927)
  • [4] E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente, Z. Phys. 48, 73-79 (1928)
  • [5] G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Pitman Advanced Publishing Program, Boston, 1985 MR 855240
  • [6] C. D. Luning, An iterative technique for obtaining solutions of a Thomas-Fermi equation, SIAM J. Math. Anal. 9, 515-523 (1978) MR 0483486
  • [7] J. W. Mooney, A unified approach to the solution of certain classes of nonlinear boundary value problems using monotone iterations, Nonlinear Anal. 3, 449-465 (1979) MR 537330
  • [8] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, 1967, p. 6 MR 0219861
  • [9] R. E. Roberts, Upper- and lower-bound energy calculations for atoms and molecules in the Thomas-Fermi theory, Phys. Rev. 170, 8-11 (1968)
  • [10] L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Philos. Soc. 23, 542-548 (1927)
  • [11] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Macmillan Co., New York, 1944, pp. 80, 97 MR 0010746

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 81G45, 34A50, 34B15, 34B27, 65L10

Retrieve articles in all journals with MSC: 81G45, 34A50, 34B15, 34B27, 65L10

Additional Information

DOI: https://doi.org/10.1090/qam/973385
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society