Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A numerical method for semilinear singular parabolic quenching problems


Authors: C. Y. Chan and C. S. Chen
Journal: Quart. Appl. Math. 47 (1989), 45-57
MSC: Primary 65N99
DOI: https://doi.org/10.1090/qam/987894
MathSciNet review: 987894
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For the problem given by $ {u_{xx}} + b{u_x}/x - {u_t} = - {\left( {1 - u} \right)^{ - 1}}$ for $ 0 < x < a, \\ 0 < t < {T_a} \le \infty , u\left( {x, 0} \right) = 0 = u\left( {0, t} \right) = u\left( {a, t} \right)$, where $ b$ is a constant less than one, a lower bound of $ u$ is used to estimate the critical length $ a$ beyond which quenching occurs, and an upper bound for the time when quenching happens. An upper bound of $ u$, given by the minimal solution of its steady state, is constructed by using a modified Picard method with the construction of the appropriate Green's function. To determine the critical length numerically, it is shown that for a given length $ a$, all iterates attain their maximum values at the same $ x$-coordinate; the largest interval for existence of the minimal solution corresponds to the critical length for the parabolic problem. As illustrations of the numerical method, the critical lengths corresponding to four given values of $ b$ are computed.


References [Enhancements On Off] (What's this?)

  • [1] A. Acker and W. Walter, The quenching problem for nonlinear parabolic differential equations, Lecture Notes in Math. 564, Springer-Verlag, New York, 1976, pp. 1-12 MR 0604032
  • [2] A. Acker and W. Walter, On the global existence of solutions of parabolic differential equations with a singular nonlinear term, Nonlinear Anal. 2, 499-505 (1978) MR 512487
  • [3] V. Alexiades, A singular parabolic initial-boundary value problem in a noncylindrical domain, SIAM J. Math. Anal. 11, 348-357 (1980) MR 559874
  • [4] V. Alexiades, Generalized axially symmetric heat potentials and singular parabolic initial-boundary value problems, Arch. Rat. Mech. Anal. 79, 325-350 (1982) MR 656798
  • [5] V. Alexiades and C. Y. Chan, A singular Fourier problem with nonlinear radiation in a noncylindrical domain, Nonlinear Anal. 5, 835-844 (1981) MR 628104
  • [6] L. C. Andrews, Special functions for engineers and applied mathematicians, Macmillan Publishing Co., New York, 1985, p. 229 MR 779819
  • [7] O. Arena, On a singular parabolic equation related to axially symmetric heat potentials, Ann. Mat. Pura Appl. (4) 105, 347-393 (1975) MR 0380110
  • [8] L. Bragg, The radial heat polynomials and related functions, Trans. Amer. Math. Soc. 119, 270-290 (1965) MR 0181769
  • [9] H. Brezis, W. Rosenkrantz, and B. Singer, with an appendix by P. Lax, On a degenerate elliptic-parabolic equation occurring in the theory of probability, Comm. Pure Appl. Math. 24, 395-416 (1971) MR 0284717
  • [10] R. L. Burden and J. D. Faires, Numerical analysis, 3rd ed., Prindle, Weber and Schmidt, Boston, 1985, p. 4
  • [11] C. Y. Chan and Y. C. Hon, A constructive solution for a generalized Thomas-Fermi theory of ionized atoms, Quart. Appl. Math. 45, 591-599 (1987) MR 910465
  • [12] P. H. Chang and H. A. Levine, The quenching of solutions of semilinear hyperbolic equations, SIAM J. Math. Anal. 12, 893-903 (1981) MR 635242
  • [13] F. Cholewinski and D. Haimo, The Weierstrass-Hankel convolution transform, J. Analyse Math. 17, 1-58 (1966) MR 0215021
  • [14] D. Colton, Cauchy's problem for a singular parabolic differential equation, J. Differential Equations 8, 250-257 (1970)
  • [15] D. Haimo, Series representation of generalized temperature functions, SIAM J. Appl. Math. 15, 359-367 (1967) MR 0212331
  • [16] E. Jahnke and F. Emde, Table of functions with formulae and curves, 4th ed., Dover Publications, New York, 1945, p. 167 MR 0015900
  • [17] H. Kawarada, On solutions of initial-boundary problem for $ {u_t} = {u_{xx}} + 1/\left( {1 - u} \right)$, Publ. Res. Inst. Math. Sci. 10, Kyoto Univ., 729-736 (1975) MR 0385328
  • [18] J. Lamperti, A new class of probability theorems, J. Math. Mech. 11, 749-772 (1962) MR 0148120
  • [19] H. A. Levine, The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 14, 1139-1153 (1983) MR 718814
  • [20] H. A. Levine, The phenomenon of quenching: a survey, in V. Lakshmikantham (ed.), Trends in the Theory and Practice of Non-linear Analysis, North Holland, New York, 1985, pp. 275-286 MR 817500
  • [21] H. A. Levine and G. M. Lieberman, Quenching of solutions of parabolic equations with nonlinear boundary conditions in several dimensions, J. Reine Angew. Math. 345, 23-38 (1983) MR 717884
  • [22] H. A. Levine and J. T. Montgomery, The quenching of solutions of some nonlinear parabolic equations, SIAM J. Math. Anal. 11, 842-847 (1980) MR 586912
  • [23] N. W. McLachlan, Bessel functions for engineers, 2nd ed., Oxford University Press, London, 1955, p. 197
  • [24] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, 1967, pp. 6 and 168-170 MR 0219861
  • [25] H. L. Royden, Real analysis, 2nd ed., Macmillan Publishing Co., New York, 1968, p. 84 MR 1013117
  • [26] A. D. Solomon, Melt time and heat flux for a simple PCM body, Solar Energy 22, 251-257 (1979)
  • [27] W. Walter, Parabolic differential equations with a singular nonlinear term, Funkcial. Ekvac. 19, 271-277 (1976) MR 0435596

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 65N99

Retrieve articles in all journals with MSC: 65N99


Additional Information

DOI: https://doi.org/10.1090/qam/987894
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society