Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Perturbation of the eigenvalues of a membrane with a concentrated mass


Authors: C. Leal and J. Sanchez-Hubert
Journal: Quart. Appl. Math. 47 (1989), 93-103
MSC: Primary 73K12; Secondary 35B25
DOI: https://doi.org/10.1090/qam/987898
MathSciNet review: 987898
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a vibrating membrane with a distribution of density depending on $ \varepsilon $, which converges, as $ \varepsilon \searrow 0$, to a uniform density, plus a point mass at the origin. We establish local vibrations at the vicinity of the origin and global vibrations of the membrane. The asymptotic study for $ \varepsilon \searrow 0$ is performed using the method of matched asymptotic expansions.


References [Enhancements On Off] (What's this?)

  • [1] E. Sánchez-Palencia, Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses, Trends and applications of pure mathematics to mechanics (Palaiseau, 1983) Lecture Notes in Phys., vol. 195, Springer, Berlin, 1984, pp. 346–368. MR 755735, https://doi.org/10.1007/3-540-12916-2_66
  • [2] E. Sánchez-Palencia and H. Tchatat, Vibration de systèmes élastiques avec des masses concentrées, Rend. Sem. Mat. Univ. Politec. Torino 42 (1984), no. 3, 43–63 (French). MR 834781
  • [3] H. Tchatat, Thèse de 3ème cycle, University Pierre et Marie Curie, 1984
  • [4] O. A. Oleĭnik, Homogenization problems in elasticity. Spectra of singularly perturbed operators, Nonclassical continuum mechanics (Durham, 1986) London Math. Soc. Lecture Note Ser., vol. 122, Cambridge Univ. Press, Cambridge, 1987, pp. 53–95. MR 926498, https://doi.org/10.1017/CBO9780511662911.005
  • [5] J. Sanchez Hubert and E. Sánchez-Palencia, Vibration and coupling of continuous systems, Springer-Verlag, Berlin, 1989. Asymptotic methods. MR 996423
  • [6] J. Kevorkian and Julian D. Cole, Perturbation methods in applied mathematics, Applied Mathematical Sciences, vol. 34, Springer-Verlag, New York-Berlin, 1981. MR 608029
  • [7] G. Goursat, Cours d' Analyse mathématique, Gauthier-Villars, Paris, Vol. 3 (1921)
  • [8] R. Dautray and J. L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Tome 1, Masson, Paris
  • [9] O. A. Ladyzenskaia, Mathematical theory of viscous fluid flows, Gordon and Breach, New York, 1963

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73K12, 35B25

Retrieve articles in all journals with MSC: 73K12, 35B25


Additional Information

DOI: https://doi.org/10.1090/qam/987898
Article copyright: © Copyright 1989 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website