Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Line forces and dislocations in angularly inhomogeneous anisotropic elastic wedges and spaces

Author: T. C. T. Ting
Journal: Quart. Appl. Math. 47 (1989), 123-128
MSC: Primary 73C30; Secondary 73C40, 73S05
DOI: https://doi.org/10.1090/qam/987901
MathSciNet review: 987901
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. D. Eshelby, W. T. Read, and W. Shockley, Anisotropic elasticity with applications to dislocation theory, Acta Metall. 1, 251-259 (1953)
  • [2] A. N. Stroh, Dislocations and cracks in anisotropic elasticity, Phil. Mag. (8) 3 (1958), 625–646. MR 0094961
  • [3] D. M. Barnett and L. A. Swanger, The elastic energy of a straight dislocation in an infinite anisotropic elastic medium, Phys. Status Solidi B 48, 414-428 (1971)
  • [4] D. M. Barnett and J. Lothe, Synthesis of the sextic and the integral formalism for dislocation, Green functions and surface waves in anisotropic elastic solids, Phys. Norv. 7, 13-19 (1973)
  • [5] R. J. Asaro, J. P. Hirth, D. M. Barnett, and J. Lothe, A further synthesis of sextic and integral theories for dislocations and line forces in anisotropic media, Phys. Status Solidi B 60, 261-271 (1973)
  • [6] T. Mura, A note on the strain field of a dislocation line in anisotropic media, Phys. Status Solidi B 70, K1-K6 (1975)
  • [7] D. M. Barnett and J. Lothe, Line force loadings on anisotropic half-spaces and wedges, Phys. Norv. 8, 13-22 (1975)
  • [8] P. Chadwick and G. D. Smith, Foundations of the theory of surface waves in anisotropic elastic materials, Adv. Appl. Mech. 17, 303-376 (1977)
  • [9] J. Braekhus and J. Lothe, Dislocations at and near planar interfaces, Phys. Status Solidi B 43, 651-657 (1971)
  • [10] D. M. Barnett and J. Lothe, An image force theorem for dislocations in anisotropic bicrystals, J. Phys. F 4, 1618-1635 (1974)
  • [11] T. C. T. Ting, Line forces and dislocations in anisotropic elastic composite wedges and spaces, Phys. Status Solidi B, 14b, 81-90 (1988)
  • [12] C. H. Wu and Chao-Hsun Chen, Wedge-apex crack in an angularly inhomogeneous wedge, J. Appl. Mech., in press (1989)
  • [13] T. C. T. Ting, The anisotropic elastic wedge under a concentrated couple, Quart. J. Mech. Appl. Math. 41 (1988), no. 4, 563–578. MR 980217, https://doi.org/10.1093/qjmam/41.4.563
  • [14] T. C. T. Ting, Some identities and the structure of 𝑁ᵢ in the Stroh formalism of anisotropic elasticity, Quart. Appl. Math. 46 (1988), no. 1, 109–120. MR 934686, https://doi.org/10.1090/S0033-569X-1988-0934686-3
  • [15] H. O. K. Kirchner, Line defects along the axis of rotationally inhomogeneous media, Phil. Mag. A, 55, 537-542 (1987)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73C30, 73C40, 73S05

Retrieve articles in all journals with MSC: 73C30, 73C40, 73S05

Additional Information

DOI: https://doi.org/10.1090/qam/987901
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society