Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On random determinants


Author: A. Dembo
Journal: Quart. Appl. Math. 47 (1989), 185-195
MSC: Primary 62H10; Secondary 60E05, 60F05, 68T05
DOI: https://doi.org/10.1090/qam/998095
MathSciNet review: 998095
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The distribution of the determinant $ \left( {{U^T}U} \right)$, where $ U$ is a $ P \times N$ matrix $ \left( {P \le N} \right)$ composed of $ P \times N$ i. i. d. random variables with symmetrical distribution is investigated. In particular, explicit formulas for the first two moments are obtained, as well as the higher moments for standard normal distribution of the elements of $ U$. These formulas extend the previously known results for $ P = N$.


References [Enhancements On Off] (What's this?)

  • [1] A. Dembo, On the Capacity of Associative Memories with Linear Threshold Functions, to appear in IEEE Trans. on Information Theory MR 1013681
  • [2] R. Fortet, Random determinants, J. Research. Nat. Bur. Standards 17, 465-470 (1951) MR 0047274
  • [3] P. Turan, On a problem in the theory of determinants, Acta. Math. Sinica 5, 417-423 (1955) MR 0073555
  • [4] H. Nyquist, S. O. Rice, and J. Riordan, The distribution of random determinants, Quart. Appl. Math. 12, 97-102 (1954) MR 0063591
  • [5] A. Prekopa, On random determinants I, Studia Scientiarum Mathematicarum Hungarica 2, 125-132 (1967) MR 0211439
  • [6] S. S. Wilks, Mathematical Statistics, Wiley, New York, London, 1962 MR 0144404
  • [7] G. E. Forsythe and J. W. Tukey, The extent of n random unit vectors (abstract), Bull. Amer. Math. Soc. 58, 502 (1952)
  • [8] J. Riordan, An introduction to combinatorial analysis, Wiley, New York, London, 1958 MR 0096594
  • [9] A. N. Shiryayev, Probability, Springer-Verlag, New York, 1984 MR 737192
  • [10] Kömlos, Estimate for singular matrices, unpublished manuscript, also on pp. 347-350 of Random Graphs by B. Bollobas, Academic press, 1985
  • [11] Particle Systems, Random Matrices and Large Deviations, AMS Series on Contemporary Math., vol. 41, 1984
  • [12] A. Dembo, On random determinants, LCDS/CCS Report #87-3, Division of Applied Mathematics, Brown University

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 62H10, 60E05, 60F05, 68T05

Retrieve articles in all journals with MSC: 62H10, 60E05, 60F05, 68T05


Additional Information

DOI: https://doi.org/10.1090/qam/998095
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society