Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Uniform $ L^1$ behavior in a class of linear Volterra equations


Author: Richard Noren
Journal: Quart. Appl. Math. 47 (1989), 547-554
MSC: Primary 45J05; Secondary 45D05, 45M05, 45N05
DOI: https://doi.org/10.1090/qam/1012278
MathSciNet review: MR1012278
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We find sufficient conditions for the solution of the equation $ u'\left( t \right) + \\ \int_0^t {\sum\nolimits_{i = 1}^n {{\lambda _i}{a_i}\left( {t - s} \right)u\left( s \right)ds = 0, u\left( 0 \right) = 1} } $, to satisfy $ \int_0^\infty {{{\sup }_{{\lambda _1},...,{\lambda _n} \ge 1}}{{\left( {{\lamb... ...2}} \times \\ u'\left( {t, {\lambda _1},...,{\lambda _n}} \right)dt < \infty } $. Our results generalize the case $ n = 1$. Applications to a related equation in Hilbert space are given.


References [Enhancements On Off] (What's this?)

  • [1] R. W. Carr and K. B. Hannsgen, A nonhomogeneous integrodifferential equation in Hilbert space, SIAM. J. Math. Anal. 10, 961-984 (1989) MR 541094
  • [2] R. W. Carr and K. B. Hannsgen, Resolvent formulas for a Volterra equation in Hilbert space, SIAM. J. Math. Anal. 13, 459-483 (1982) MR 653467
  • [3] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Clarendon press, Oxford, 1959 MR 959730
  • [4] K. B. Hannsgen, Indirect abelian theorems and a linear Volterra equation, Trans. Amer. Math. Soc. 142, 539-555 (1969) MR 0246058
  • [5] K. B. Hannsgen, A linear integrodifferential equation for viscoelastic rods and plates, Quart. Appl. Math. 41, 75-83 (1983) MR 700662
  • [6] K. B. Hannsgen and R. L. Wheeler, Behavior of the solution of a Volterra equation as a parameter tends to infinity, J. Integral Equations 7, 229-237 (1984) MR 770149
  • [7] K. B. Hannsgen and R. L. Wheeler, Uniform L$ ^{1}$ behavior in classes of integrodifferential equations with completely monotonic kernels, SIAM. J. Math. Anal. 15, 579-594 (1984) MR 740697
  • [8] R. C. MacCamy, An integrodifferential equation with application in heat flow, Quart. Appl. Math. 35, 1-19 (1977) MR 0452184
  • [9] R. D. Noren, Uniform L$ ^{1}$ behavior for the solution of a Volterra equation with a parameter, SIAM J. Math. Anal. 19, 270-286 (1988) MR 930026
  • [10] R. D. Noren, A linear Volterra integrodifferential equation for viscoelastic rods and plates, Quart. Appl. Math. 45, 503-514 (1987) MR 910457
  • [11] R. D. Noren, Uniform L$ ^{1}$ behavior in class of integrodifferential equations with convex kernels, J. Integral Equations Appl. (to appear) MR 1003702
  • [12] D. F. Shea and S. Wainger, Variants of the Wiener-Levy theorem, with applications to stability problems for some Volterra integral equations, Amer. J. Math. 97, 312-343 (1975) MR 0372521

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 45J05, 45D05, 45M05, 45N05

Retrieve articles in all journals with MSC: 45J05, 45D05, 45M05, 45N05


Additional Information

DOI: https://doi.org/10.1090/qam/1012278
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society