Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A numerical treatment of a superdegenerate equation with applications to the porous media equation


Authors: M. Bertsch and R. Dal Passo
Journal: Quart. Appl. Math. 48 (1990), 133-152
MSC: Primary 65M12; Secondary 35K65, 76S05
DOI: https://doi.org/10.1090/qam/1040238
MathSciNet review: MR1040238
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] D. G. Aronson, Nonlinear diffusion problems, Free Boundary Problems: Theory and Applications, Vol. 1 (eds. A. Fasano and M. Primicerio), Research Notes in Mathematics 78, Pitman, London, 1983, pp. 134-149 MR 714914
  • [2] D. G. Aronson, The porous medium equation, Some Problems in Nonlinear Diffusion (eds. A. Fasano and M. Primicerio), Lecture Notes in Mathematics 1224 (CIME Foundation Series), Springer, Berlin, (1986) MR 877986
  • [3] D. G. Aronson, L. A. Caffarelli, and S. Kamin, How an initially stationary interface begins to move in porous medium flow, SIAM J. Math. Anal. 14, 639-658 (1983) MR 704481
  • [4] D. G. Aronson, L. A. Caffarelli, and J. L. Vazquez, Interfaces with a corner point in one-dimensional porous medium flow, Comm. Pure Appl. Math. 38, 375-404 (1985) MR 792397
  • [5] V. F. Baklanovskaja, The numerical solution of a one-dimensional problem for equations of nonstationary filtrations, Zh. Vychisl. Mat. i Mat. Fiz. 1, 461-469 (1961)
  • [6] A. E. Berger, H. Brézis, and J. C. W. Rogers, A numerical method for solving the problem $ {u_t} - \Delta f\left( u \right) = 0$, RAIRO Anal. Num. 13, 297-312 (1979)
  • [7] J. G. Berryman, Slow diffusion on the line, J. Math. Phys. 21, 1326-1331 (1980)
  • [8] M. Bertsch, R. Dal Passo, and M. Ughi, Nonuniqueness of solutions of a degenerate parabolic equation, preprint no. 4, Ist. Appl. Calc., Rome (1988) MR 1174811
  • [9] M. Bertsch, C. J. Van Duyn, J. R. Esteban, and Zhang Hongfei, Regularity of the free boundary in a doubly degenerate parabolic equation, Comm. Partial Differential Equations 14, 391-412 (1989) MR 987058
  • [10] L. A. Caffarelli and A. Friedman, Regularity of the free boundary for the one-dimensional flow of gas in a porous medium, Amer. J. Math. 101, 1193-1281 (1979) MR 548877
  • [11] R. Dal Passo and S. Luckhaus, On a degenerate diffusion problem not in divergence form, to appear in J. Differential Equations 69, 1-14 (1987) MR 897437
  • [12] E. DiBenedetto and D. Hoff, An interface tracking algorithm for the porous medium equation, Trans. Amer. Math. Soc. 288, 463-500 (1984) MR 743729
  • [13] J. L. Graveleau and P. Jamet, A finite difference approach to some degenerate nonlinear parabolic equations, SIAM J. Appl. Math. 20, 199-223 (1971) MR 0290600
  • [14] M. E. Gurtin, R. C. MacCamy, and E. A. Socolovsky, A coordinate transformation for the porous media equation that renders the free-boundary stationary, Quart. Appl. Math. 42, 345-357 (1984) MR 757173
  • [15] D. Hoff, A linearly implicit finite difference scheme for the one-dimensional porous medium equation, Math. Comp. 45, 23-33 (1985) MR 790642
  • [16] M. Mimura, T. Nakaki, and K. Tomoeda, A numerical approach to interface curves for some nonlinear diffusion equations, Japan J. Appl. Math. 1, 93-139 (1984) MR 839309
  • [17] M. Mimura and K. Tomoeda, Numerical approximations to interface curves for a porous media equation, Hiroshima Math. J. 13, 273-294 (1983) MR 707183
  • [18] M. E. Rose, Numerical methods for flows through porous media--I, Math. Comp. 40, 435-467 (1983) MR 689465
  • [19] M. E. Rose, Numerical methods for a porous medium equation, Argonne Nat. Lab. Rep., Argonne, Illinois (1978) MR 2611773
  • [20] M. E. Rose, Numerical methods for a general class of porous medium equations, Argonne Nat. Lab. Rep., Argonne, Illinois (1980)
  • [21] G. Rosen, Nonlinear heat conduction in solid H$ _{2}$, Phys. Rev. B 19, 2398-2399 (1979)
  • [22] E. A. Socolovsky, Difference schemes for degenerate nonlinear parabolic equations, preprint Carnegie-Mellon Univ., Pittsburgh (1983)
  • [23] M. Ughi, A degenerate parabolic equation modelling the spread of an epidemic, Ann. Mat. Pura Appl. 143, 385-400 (1986) MR 859613
  • [24] J. L. Vazquez, The interface of one-dimensional flows in porous media, Trans. Amer. Math. Soc. 285, 717-737 (1984) MR 752500

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 65M12, 35K65, 76S05

Retrieve articles in all journals with MSC: 65M12, 35K65, 76S05


Additional Information

DOI: https://doi.org/10.1090/qam/1040238
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society