Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension


Authors: A. Fasano, M. Primicerio, S. D. Howison and J. R. Ockendon
Journal: Quart. Appl. Math. 48 (1990), 153-168
MSC: Primary 35R35; Secondary 35K05, 80A20
DOI: https://doi.org/10.1090/qam/1040239
MathSciNet review: MR1040239
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] D. A. Tarzia, A Bibliography on Moving-free Boundary Problems for the Heat Diffusion Equation, Istituto Matematico ``U. Dini", Firenze, 1988
  • [2] C. M. Elliott and J. R. Ockendon, Weak and Variational Methods for Moving Boundary Problems, Res. Notes Math. 59, Pitman, Boston-London, 1982 MR 650455
  • [3] A. Fasano and M. Primicerio, General free boundary problems for the heat equation, J. Math. Anal. Appl., Part I 57, 694-723; (1977) Part II 58, 202-231; (1977). Part III 59, 1-14 (1977) MR 0487016
  • [4] A. Fasano, S. Kamin, and M. Primicerio, Regularity of weak solutions of one dimensional two-phase Stefan problems, Ann. Mat. Pura Appl. 115, 341-348 (1977) MR 0477460
  • [5] A. Fasano, M. Primicerio, and A. A. Lacey, New results on some classical parabolic free-boundary problems, Quart. Appl. Math. 38, 439-460 (1981) MR 614552
  • [6] B. Sherman, A general one-phase Stefan problem, Quart. Appl. Math. 28, 377-382 (1970) MR 0282082
  • [7] C. Baiocchi and G. A. Pozzi, An evolution variational inequality related to a diffusion-absorption problem, Appl. Math Optim. 2, 304-314 (1975) MR 0430538
  • [8] P. Van Moerbeke, Optimal stopping and free boundary problems, Rocky Mountain J. Math. 4, 539-578 (1974) MR 0381188
  • [9] A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Funct. Anal. 18, 151-176 (1975) MR 0477461
  • [10] E. Di Benedetto and A. Friedman, The ill-posed Hele-shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc. 282, 183-204 (1984) MR 728709
  • [11] R. Jensen, Smoothness of the free boundary in the Stefan problem with supercooled water, Illinois J. Math. 22, 623-629 (1978) MR 503966
  • [12] J. S. Langer, Instabilities and pattern formation in crystal growth, Rev. Modern Phys. 52, 1-28 (1980)
  • [13] A. Visintin, supercooling and superheating effects in phase transition, IMA J. Appl. Math. 35, 233-256 (1985) MR 839201
  • [14] A. Visintin, A new model for supercooling and superheating effects, IMA J. Appl. Math. 36, 141-157 (1986) MR 984464
  • [15] A. B. Crowley and J. R. Ockendon, Modelling mushy regions, Appl. Sci. Res. 44, 1-7 (1987)
  • [16] A. Schatz, Free boundary problems of Stefan type with prescribed flux, J. Math. Anal. Appl. 28, 569-580 (1969) MR 0267285
  • [17] A. Fasano, Alcune osservazioni su una classe di problemi a contorno libero per l'equazione del calore, Le Matematiche 29, 397-411 (1974) MR 0410085
  • [18] J. Crank and R. S. Gupta, A moving boundary problem arising from the diffusion of oxygen in absorbing tissue, J. Inst. Math. Appl. 10, 19-33 (1972) MR 0347105
  • [19] D. R. Atthey, A finite difference scheme for melting problems, J. Inst. Math. Appl. 13, 353-356 (1974) MR 0351295
  • [20] M. Primicerio, Mushy region in phase change problems, Applied Nonlinear Functional Analysis: Variational Methods and Ill-Posed Problems, K. H. Hoffmann and R. Gorenflo (Eds.), Verlag Peter Lang, Frankfurt, 1983, pp. 251-269 MR 685609
  • [21] A. M. Meirmanov, An example of nonexistence of a classical solution of the Stefan problem, Soviet Math. Dokl. 23, 564-566 (1981) MR 620870
  • [22] S. D. Howison, A. A. Lacey, and J. R. Ockendon, Singularity development in moving-boundary problems, Quart. J. Mech. Appl. Math. 38, 343-360 (1985) MR 800769
  • [23] S. D. Howison, Cusp development in Hele-Shaw flow with a free surface, SIAM J. Appl. Math. 46, 20-26 (1986) MR 821438
  • [24] A. Fasano and M. Primicerio, A critical case for the solvability of Stefan-like problems, Math. Methods Appl. Sci. 5, 84-96 (1983) MR 690897
  • [25] A. B. Crowley, Numerical solution of alloy solidification problems revisited, Free Boundary Problems: Applications and Theory (A. Bossavit et al. eds.), Res. Notes Math. 120, Pitman, 1985, pp. 122-131
  • [26] W. Xie, The Stefan problem with a kinetic condition at the free boundary, to appear MR 1038897
  • [27] D. G. Schaeffer, Some examples of singularities in a free boundary, Ann. Sc. Norm. Sup. Pisa (IV) 4, 133-144 (1977) MR 0516201

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35R35, 35K05, 80A20

Retrieve articles in all journals with MSC: 35R35, 35K05, 80A20


Additional Information

DOI: https://doi.org/10.1090/qam/1040239
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society