Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Nonexistence of monotonic solutions in a model of dendritic growth


Author: William C. Troy
Journal: Quart. Appl. Math. 48 (1990), 209-215
MSC: Primary 80A20; Secondary 34C11
DOI: https://doi.org/10.1090/qam/1052131
MathSciNet review: MR1052131
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A simple model for dendritic growth is given by $ {\delta ^2}\theta ''' + \theta ' = \cos \left( \theta \right)$. For $ \delta \approx 1$ we prove that there is no bounded, monotonic solution which satisfies $ \theta \left( { - \infty } \right) = - \pi /2$ and $ \theta \left( \infty \right) = \pi /2$. We also investigate the existence of bounded, monotonic solutions of an equation derived from the Kuramoto-Sivashinsky equation, namely $ y''' + y' = 1 - {y^2}/2$. We prove that there is no monotonic solution which satisfies $ y\left( { - \infty } \right) = - \sqrt 2 $ and $ y\left( \infty \right) = \sqrt 2 $.


References [Enhancements On Off] (What's this?)

  • [1] R. C. Brower, D. A. Kessler, J. Koplik, and H. Levine, Geometrical approach to moving-interface dynamics, Phys. Rev. Letters 51, 1111-1114 (1983)
  • [2] R. C. Brower. D. A. Kessler, J. Koplik, and H. Levine, Geometric models of interface evolution, Phys. Rev. A 29 (3), 1335-1342 (1984)
  • [3] R. F. Dashen, D. A. Kessler, H. Levine, and R. Savit, The geometrical model of dendritic growth; The small velocity limit, Physica D 21, 371-380 (1984). MR 862264
  • [4] Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theo. Phys. 55, 356-369 (1976)
  • [5] M. Kruskal and H. Segur, Asymptotics beyond all orders in a model of crystal growth, preprint MR 1115186
  • [6] D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation, Physica D 19, 89-111 (1986) MR 840029
  • [7] G. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, I. Derivation of basic equations, Acta Astronautica 4, 1117-1206 (1977) MR 0502829
  • [8] W. C. Troy, The existence of steady solutions of the Kuramoto-Sivashinsky equation, J.D.E. 82 (2), 269-313 (1989) MR 1027970

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 80A20, 34C11

Retrieve articles in all journals with MSC: 80A20, 34C11


Additional Information

DOI: https://doi.org/10.1090/qam/1052131
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society