Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A problem in the optimal design of networks under transverse loading


Authors: Elio Cabib, Cesare Davini and Chong Qing Ru
Journal: Quart. Appl. Math. 48 (1990), 251-263
MSC: Primary 73K40; Secondary 49J45, 49N99, 73V25
DOI: https://doi.org/10.1090/qam/1052135
MathSciNet review: MR1052135
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. Kohn and G. Strang, Optimal design and relaxation of variational problems, Comm. Pure Appl. Math. 34, Part I 113-137, Part II 139-182, Part III 353-377 (1986)
  • [2] N. V. Banichuk, Problems and Methods of Optimal Structural Design, Plenum Press, New York, 1983 MR 715778
  • [3] N. Olhoff and J. E. Taylor, On structural optimization, Trans. ASME Ser. E. J. Appl. Mech. 50, 1139-1151 (1983) MR 726559
  • [4] N. C. Huang, Optimal design of elastic structures for maximum stiffness, Internat. J. Solids and Structures 17, 305-311 (1981)
  • [5] K. T. Cheng and N. Olhoff, An investigation concerning optimal design of solid elastic plates, Internat. J. Solids and Structures 17, 305-323 (1981) MR 610907
  • [6] N. C. Huang, Optimal design of elastic beams for minimum-maximum deflection, J. Appl. Mech. 38, 1078-1081 (1971)
  • [7] W. Prager and J. E. Taylor, Problems of optimal structural design, J. Appl. Mech. 35, 102-106 (1968)
  • [8] R. Reiss, Optimal compliance criterion for axisymmetric solid plates, Internat. J. Solids and Structures 12, 319-329 (1976) MR 0411331
  • [9] K. A. Lurie and A. V. Cherkaev, G-closure of some particular sets of admissible material characteristics for the problem of bending of thin elastic plates, J. Optim. Theory Appl. 42, 305-316 (1984) MR 737973
  • [10] K. A. Lurie, A. V. Cherkaev, and A. V. Fedorov, Regularization of optimal design problems for bars and plates, J. Optim. Theory Appl. 37, Part 1 499-522, Part 2 523-543 1982)
  • [11] K. A. Lurie, A. V. Cherkaev, and A. V. Fedorov, On the existence of solutions to some problems of optimal design for bars and plates, J. Optim. Theory Appl. 42, 247-282 (1984) MR 737971
  • [12] K. A. Lurie and A. V. Cherkaev, Optimal structural design and relaxed controls, Optimal Control Appl. Methods 4, 387-392 (1983)
  • [13] F. Murat and L. Tartar, Calcul des variations et homogénéization, Cours de l'Ecole d'Eté d'Analyse Numérique CEA-EDF-INRIA sur l'homogénéisation, Bréau sans Nappe, Juillet 1983, Eyrolles, Paris, 1984
  • [14] E. Cabib and G. Dal Maso, On a class of optimum problems in structural design, J. Optimization Theory Appl. 56, 39-65 (1988) MR 922377
  • [15] R. S. Rivlin, Plane strain of a net formed by inextensible cords, J. Rational Mech. Anal. 4, 951-974 (1955) MR 0074998
  • [16] S. Spagnolo, Convergence in energy for elliptic operators, Proc. 3rd Symp. Numer. Solut. Partial Diff. Equat., College Park, Md., 1975, ed. by B. Hubbard, Academic Press, New York, 1976, pp. 469-498 MR 0477444
  • [17] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. U.M.I. (4) 8, 391-411 (1973)
  • [18] W. Velte and P. Villaggio, Are the optimum problems in structural design well posed?, Arch. Rational Mech. Anal. 78, 199-211 (1982) MR 650843
  • [19] F. Murat, Un contre-exemple pour le problème du contrôle dans les coefficients, C. R. Acad. Sci. Paris, Ser. A 273, 708-711 (1971) MR 0288651
  • [20] F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl. (4) 112, 49-68 (1977) MR 0438205
  • [21] I. N. Rozvany, N. Olhoff, K. T. Cheng, and J. E. Taylor, On the solid plate paradox in structural optimization, J. Struct. Mech. 10, 1-32 (1982) MR 668257
  • [22] W. Rudin, Real and complex analysis, McGraw Hill, New York, 1966 MR 0210528
  • [23] H. W. Kuhn and A. W. Tucker, Nonlinear programming , Proc. of the 2nd Berkeley Symp. on Math. Statistic and Probability, J. Wiley, Berkeley, Univ. of California, 1951 MR 0047303
  • [24] J. E. Taylor, Maximum strength elastic structural design, Journal of the Engineering Mechanics Division, ASCE, 95, No. EM3, 653-663 (1969)
  • [25] O. A. Ladizheskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 MR 0244627

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73K40, 49J45, 49N99, 73V25

Retrieve articles in all journals with MSC: 73K40, 49J45, 49N99, 73V25


Additional Information

DOI: https://doi.org/10.1090/qam/1052135
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society