Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Is quenching in infinite time possible?


Authors: Marek Fila and Bernhard Kawohl
Journal: Quart. Appl. Math. 48 (1990), 531-534
MSC: Primary 35B40; Secondary 35K57
DOI: https://doi.org/10.1090/qam/1074968
MathSciNet review: MR1074968
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. Acker and B. Kawohl, Remarks on quenching, Nonlinear Anal. TMA 13, 53-61 (1989) MR 973368
  • [2] A. Acker and W. Walter, The Quenching Problem for Nonlinear Parabolic Equations, Springer Lecture Notes in Math., Vol. 564, 1976, pp. 1-12 MR 0604032
  • [3] A. Acker and W. Walter, On the global existence of solutions of parabolic differential equations with a singular nonlinear term, Nonlinear Anal. TMA 2, 499-505 (1978) MR 512487
  • [4] K. Deng and H. A. Levine, On the blow up of $ {u_t}$ at quenching, Proc. Amer. Math. Soc. 106, 1049-1056 (1989) MR 969520
  • [5] M. Fila, Boundedness of global solutions of nonlinear diffusion equations, Preprint 497, SFB 123, Heidelberg (1988) MR 1170469
  • [6] M. Fila and B. Kawohl, Asymptotic analysis of quenching problems, Preprint 514, SFB 123, Heidelberg (1989), to appear in Rocky Mt. J. Math. MR 1180720
  • [7] A. Friedman and B. McLeod, Blow up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34, 425-447 (1985) MR 783924
  • [8] H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $ P{u_t} = - Au + F\left( u \right)$, Arch. Rational Mech. Anal. 51, 371-386 (1973) MR 0348216
  • [9] H. A. Levine, The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 14, 1139-1153 (1983) MR 718814
  • [10] H. A. Levine, The phenomenon of quenching: a survey, Trends in the Theory and Practice of Nonlinear Analysis (V. Lakshmikantham, ed.), North Holland, 1985, pp. 275-286 MR 817500
  • [11] H. A. Levine, Quenching, nonquenching and beyond quenching for solutions of some parabolic equations, Ann. Mat. Pura Appl., Ser. IV CLV, 243-260 (1989) MR 1042837
  • [12] H. A. Levine and G. M. Lieberman, Quenching of solutions of parabolic equations with nonlinear boundary conditions in several dimensions, J. Reine Angew. Math. 345, 23-38 (1983) MR 717884
  • [13] H. A. Levine and J. T. Montgomery, The quenching of solutions of some nonlinear parabolic equations, SIAM J. Math. Anal. 11, 842-847 (1980) MR 586912
  • [14] W. M. Ni, P. E. Sacks, and J. Tavantzis, On the asymptotic behaviour of solutions of certain quasilinear parabolic equations, J. Differential Equations 54, 97-120 (1984) MR 756548
  • [15] H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order preserving systems, J. Fac. Sci. Tokyo 30, 645-673 (1983) MR 731522

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35B40, 35K57

Retrieve articles in all journals with MSC: 35B40, 35K57


Additional Information

DOI: https://doi.org/10.1090/qam/1074968
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society